93 research outputs found

    Identification of glucose transporters in Aspergillus nidulans

    Get PDF
    o characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose.The authors would like to thank the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brazil for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Preparação e caracterização de um biocompósito obtido pela mistura de hidreto de titânio com nitrato de cálcio para implantes dentários

    Get PDF
    RESUMO Neste trabalho foram realizados estudos sobre a fabricação de um biocompósito à base de titânio para implantes dentários a partir da mistura de pó de hidreto de titânio (92%) com nitrato de cálcio (8% em volume). O pó de hidreto de titânio foi adicionado na solução aquosa de nitrato de cálcio, dissolvido por agitação mecânica, e em seguida os precursores foram misturados e dispersados/homogeneizados por ultrassom. Posteriormente, a mistura foi secada em evaporador rotativo, compactada com 600 MPa à temperatura ambiente, desmoldada e sinterizada em alto vácuo a 1200 oC durante 2 horas. Foi analisada a microestrutrura e fases formadas, as propriedades mecânicas, a rugosidade da superfície, a porosidade aberta, a molhabilidade da superfície e a citotoxicidade do biocompósito. As fases identificadas após a sinterização foram α-Ti e CaTiO3. O limite de resistência em compressão, o módulo de Young (E) e o ângulo de contato do biocompósito diminuíram significativamente com relação ao hidreto de titânio puro sinterizado nas mesmas condições. O limite médio de resistência em compressão do hidreto de titânio foi de 1794,67 MPa e do biocompósito foi de 481,36 MPa. O módulo de Young e o ângulo de contato do hidreto de titânio e do biocompósito foram de aproximadamente 112 GPa e 94 graus, e de 75 GPa e 83 graus, respectivamente. A rugosidade de superfície foi da mesma ordem de grandeza entre os materiais e ficou aproximadamente entre 1,4 e 1,5 µm (Ra) e 1,4 e 1,9 µm (Ra e Sa), medidas com rugosímetro de contato e com microscópio confocal a laser, respectivamente. A porosidade aberta do biocompósito sinterizado foi de aproximadamente três vezes maior do que aquela do hidreto de titânio sinterizado. Nos ensaios de citotoxicidade a porcentagem de células viáveis do biocompósito foi superior àquela do controle negativo e àquela do hidreto de titânio sinterizado
    corecore