32 research outputs found

    Dimensions of professional competences for interventions towards sustainability

    Get PDF
    This paper investigates sustainability competences through the eyes of professional practitioners in the field of sustainability and presents empirical data that have been created using an action research approach. The design of the study consists of two workshops, in which professional practitioners in interaction with each other and the facilitators are invited to explore and reflect on the specific knowledge, skills, attitudes and behaviours necessary to conduct change processes successfully towards sustainability in a variety of business and professional contexts. The research focuses on the competences associated with these change processes to devise, propose and conduct appropriate interventions that address sustainability issues. Labelled ‘intervention competence’, this ability comprises an interlocking set of knowledge, skills, attitudes and behaviours that include: appreciating the importance of (trying to) reaching decisions or interventions; being able to learn from lived experience of practice and to connect such learning to one’s own scientific knowledge; being able to engage in political-strategic thinking, deliberations and actions, related to different perspectives; the ability for showing goal-oriented, adequate action; adopting and communicating ethical practices during the intervention process; being able to cope with the degree of complexity, and finally being able to translate stakeholder diversity into collectively produced interventions (actions) towards sustainability. Moreover, this competence has to be practised in contexts of competing values, non-technical interests and power relations. The article concludes with recommendations for future research and practice

    Use: What is needed to support sustainability?

    No full text
    Increased demands for agricultural output per unit of land area must be met in a way that encourages improved efficiency and better stewardship of natural resources, including phosphate rock. Modern crops remove between 5 and 35 kg P/ha, with P removal exceeding 45 kg P/ha for high-yielding maize. In situations such as Sub-Saharan Africa, where soil fertility is low and P removal exceeds average inputs of 2 kg P/ha/year, the resulting nutrient depletion severely restricts yields (e.g., maize yields < 1,000 kg/ha/year) and accelerates soil degradation. In other regions, excessive P inputs produce economic inefficiencies and increase the risk of P loss, with negative environmental consequences. During the year of application, plants recover 15–25 % of the added P, with the remaining fraction converting to less soluble forms or residual P which becomes plant available over time. Improving P efficiency requires a balance between the imperatives to produce more food while minimizing P losses. Utilizing transdisciplinary approaches, a number of social, economic, and environmental goals can be simultaneously achieved if progress is made toward short- and long-term food security and global P sustainability. This chapter provides an overview of efforts to improve P use efficiency in agriculture ranging from promising germplasm, improved crop, and soil management scenarios, additives in animal diets to reduce P inputs and surplus P in the manure, and opportunities for P recycling in food and household waste. Challenges and opportunities associated with each option are discussed and transdisciplinary case studies outlined

    Morpholino-azahomotricyclanimines-morpholine derivatives with a bulky cage-type substituent

    No full text
    Vilsmaier E, Roth W, Eisfeld W, et al. Morpholino-azahomotricyclanimines-morpholine derivatives with a bulky cage-type substituent. JOURNAL OF MOLECULAR STRUCTURE. 1999;513(1-3):117-126
    corecore