538 research outputs found

    Amyloid-Related memory decline in preclinical Alzheimer’s Disease is dependent on APOE ε4 and is detectable over 18-Months

    Get PDF
    High levels of β-amyloid (Aβ) in the brain and carriage of the APOE ε4 allele have each been linked to cognitive impairment in cognitively normal (CN) older adults. However, the relationship between these two biomarkers and cognitive decline is unclear. The aim of this study was to investigate the relationship between cerebral Aβ level, APOE ε4 carrier status, and cognitive decline over 18 months, in 317 cognitively healthy (CN) older adults (47.6% males, 52.4% females) aged between 60 and 89 years (Mean = 69.9, SD = 6.8). Cognition was assessed using the Cogstate Brief Battery (CBB) and the California Verbal Learning Test, Second Edition (CVLT-II). Planned comparisons indicated that CN older adults with high Aβ who were also APOE ε4 carriers demonstrated the most pronounced decline in learning and working memory. In CN older adults who were APOE ε4 non-carriers, high Aβ was unrelated to cognitive decline in learning and working memory. Carriage of APOE ε4 in CN older adults with low Aβ was associated with a significantly increased rate of decline in learning and unexpectedly, improved cognitive performance on measures of verbal episodic memory over 18 months. These results suggest that Aβ and APOE ε4 interact to increase the rate of cognitive decline in CN older adults and provide further support for the use of Aβ and APOE ε4 as biomarkers of early Alzheimer’s disease

    Assessment of a polygenic hazard score for the onset of pre-clinical Alzheimer’s disease

    Get PDF
    Background: With a growing number of loci associated with late-onset (sporadic) Alzheimer’s disease (AD), the polygenic contribution to AD is now well established. The development of polygenic risk score approaches have shown promising results for identifying individuals at higher risk of developing AD, thereby facilitating the development of preventative and therapeutic strategies. A polygenic hazard score (PHS) has been proposed to quantify age-specific genetic risk for AD. In this study, we assessed the predictive power and transferability of this PHS in an independent cohort, to support its clinical utility. Results: Using genotype and imaging data from 780 individuals enrolled in the Australian Imaging, Biomarkers and Lifestyle (AIBL) study, we investigated associations between the PHS and several AD-related traits, including 1) cross-sectional Aβ-amyloid (Aβ) deposition, 2) longitudinal brain atrophy, 3) longitudinal cognitive decline, 4) age of onset. Except in the cognitive domain, we obtained results that were consistent with previously published findings. The PHS was associated with increased Aβ burden, faster regional brain atrophy and an earlier age of onset. Conclusion: Overall, the results support the predictive power of a PHS, however, with only marginal improvement compared to apolipoprotein E alone

    Application of the NIA-AA research framework: Towards a biological definition of Alzheimer’s disease using cerebrospinal fluid biomarkers in the AIBL study

    Get PDF
    BACKGROUND: The National Institute on Aging and Alzheimer’s Association (NIA-AA) have proposed a new Research Framework: Towards a biological definition of Alzheimer’s disease, which uses a three-biomarker construct: Aß-amyloid, tau and neurodegeneration AT(N), to generate a biomarker based definition of Alzheimer’s disease. OBJECTIVES: To stratify AIBL participants using the new NIA-AA Research Framework using cerebrospinal fluid (CSF) biomarkers. To evaluate the clinical and cognitive profiles of the different groups resultant from the AT(N) stratification. To compare the findings to those that result from stratification using two-biomarker construct criteria (AT and/or A(N)). DESIGN: Individuals were classified as being positive or negative for each of the A, T, and (N) categories and then assigned to the appropriate AT(N) combinatorial group: A-T-(N)-; A+T-(N)-; A+T+(N)-; A+T-(N)+; A+T+(N)+; A-T+(N)-; A-T-(N)+; A-T+(N)+. In line with the NIA-AA research framework, these eight AT(N) groups were then collapsed into four main groups of interest (normal AD biomarkers, AD pathologic change, AD and non-AD pathologic change) and the respective clinical and cognitive trajectories over 4.5 years for each group were assessed. In two sensitivity analyses the methods were replicated after assigning individuals to four groups based on being positive or negative for AT biomarkers as well as A(N) biomarkers. SETTING: Two study centers in Melbourne (Victoria) and Perth (Western Australia), Australia recruited MCI individuals and individuals with AD from primary care physicians or tertiary memory disorder clinics. Cognitively healthy, elderly NCs were recruited through advertisement or via spouses of participants in the study. PARTICIPANTS: One-hundred and forty NC, 33 MCI participants, and 27 participants with AD from the AIBL study who had undergone CSF evaluation using Elecsys® assays. INTERVENTION (if any): Not applicable. MEASUREMENTS: Three CSF biomarkers, namely amyloid β1-42, phosphorylated tau181, and total tau, were measured to provide the AT(N) classifications. Clinical and cognitive trajectories were evaluated using the AIBL Preclinical Alzheimer Cognitive Composite (AIBL-PACC), a verbal episodic memory composite, an executive function composite, California Verbal Learning Test – Second Edition; Long-Delay Free Recall, Mini-Mental State Examination, and Clinical Dementia Rating Sum of Boxes scores. RESULTS: Thirty-eight percent of the elderly NCs had no evidence of abnormal AD biomarkers, whereas 33% had biomarker levels consistent with AD or AD pathologic change, and 29% had evidence of non-AD biomarker change. Among NC participants, those with biomarker evidence of AD pathology tended to perform worse on cognitive outcome assessments than other biomarker groups. Approximately three in four participants with MCI or AD had biomarker levels consistent with the research framework’s definition of AD or AD pathologic change. For MCI participants, a decrease in AIBL-PACC scores was observed with increasing abnormal biomarkers; and increased abnormal biomarkers were also associated with increased rates of decline across some cognitive measures. CONCLUSIONS: Increasing biomarker abnormality appears to be associated with worse cognitive trajectories. The implementation of biomarker classifications could help better characterize prognosis in clinical practice and identify those at-risk individuals more likely to clinically progress, for their inclusion in future therapeutic trials

    Validation of a priori candidate Alzheimer’s disease SNPs with brain amyloid-beta deposition

    Get PDF
    The accumulation of brain amyloid β (Aβ) is one of the main pathological hallmarks of Alzheimer’s disease (AD). However, the role of brain amyloid deposition in the development of AD and the genetic variants associated with this process remain unclear. In this study, we sought to identify associations between Aβ deposition and an a priori evidence based set of 1610 genetic markers, genotyped from 505 unrelated individuals (258 Aβ+ and 247 Aβ−) enrolled in the Australian Imaging, Biomarker & Lifestyle (AIBL) study. We found statistically significant associations for 6 markers located within intronic regions of 6 genes, including AC103796.1-BDNF, PPP3R1, NGFR, KL, ABCA7 & CALHM1. Although functional studies are required to elucidate the role of these genes in the accumulation of Aβ and their potential implication in AD pathophysiology, our findings are consistent with results obtained in previous GWAS efforts

    Plasma apolipoprotein J as a potential biomarker for Alzheimer\u27s disease: Australian Imaging, Biomarkers and Lifestyle study of aging

    Get PDF
    Introduction: For early detection of Alzheimer\u27s disease (AD), the field needs biomarkers that can be used to detect disease status with high sensitivity and specificity. Apolipoprotein J (ApoJ, also known as clusterin) has long been associated with AD pathogenesis through various pathways. The aim of this study was to investigate the potential of plasma apoJ as a blood biomarker for AD. Methods: Using the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging, the present study assayed plasma apoJ levels over baseline and 18 months in 833 individuals. Plasma ApoJ levels were analyzed with respect to clinical classification, age, gender, apolipoprotein E (APOE) ε4 allele status, mini-mental state examination score, plasma amyloid beta (Aβ), neocortical Aβ burden (as measured by Pittsburgh compound B-positron emission tomography), and total adjusted hippocampus volume. Results: ApoJ was significantly higher in both mild cognitive impairment (MCI) and AD groups as compared with healthy controls (HC; P \u3c .0001). ApoJ significantly correlated with both standardized uptake value ratio (SUVR) and hippocampus volume and weakly correlated with the plasma Aβ1-42/Aβ1-40 ratio. Plasma apoJ predicted both MCI and AD from HC with greater than 80% accuracy for AD and greater than 75% accuracy for MCI at both baseline and 18-month time points. Discussion: Mean apoJ levels were significantly higher in both MCI and AD groups. ApoJ was able to differentiate between HC with high SUVR and HC with low SUVR via APOE ε4 allele status, indicating that it may be included in a biomarker panel to identify AD before the onset of clinical symptoms. © 2016 The Authors

    Core Alzheimer’s disease cerebrospinal fluid biomarker assays are not affected by aspiration or gravity drip extraction methods

    Get PDF
    Background: CSF biomarkers are well-established for routine clinical use, yet a paucity of comparative assessment exists regarding CSF extraction methods during lumbar puncture. Here, we compare in detail biomarker profiles in CSF extracted using either gravity drip or aspiration. Methods: Biomarkers for β-amyloidopathy (Aβ1–42, Aβ1–40), tauopathy (total tau), or synapse pathology (BACE1, Neurogranin Trunc-p75, α-synuclein) were assessed between gravity or aspiration extraction methods in a sub-population of the Australian Imaging, Biomarkers and Lifestyle (AIBL) study (cognitively normal, N = 36; mild cognitive impairment, N = 8; Alzheimer’s disease, N = 6). Results: High biomarker concordance between extraction methods was seen (concordance correlation \u3e 0.85). Passing Bablock regression defined low beta coefficients indicating high scalability. Conclusions: Levels of these commonly assessed CSF biomarkers are not influenced by extraction method. Results of this study should be incorporated into new consensus guidelines for CSF collection, storage, and analysis of biomarkers

    Plasma Aβ42/40 ratio, p‐tau181, GFAP, and NfL across the Alzheimer's disease continuum: A cross‐sectional and longitudinal study in the AIBL cohort

    Get PDF
    Introduction Plasma amyloid beta (Aβ)1-42/Aβ1-40 ratio, phosphorylated-tau181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) are putative blood biomarkers for Alzheimer's disease (AD). However, head-to-head cross-sectional and longitudinal comparisons of the aforementioned biomarkers across the AD continuum are lacking. Methods Plasma Aβ1-42, Aβ1-40, p-tau181, GFAP, and NfL were measured utilizing the Single Molecule Array (Simoa) platform and compared cross-sectionally across the AD continuum, wherein Aβ-PET (positron emission tomography)–negative cognitively unimpaired (CU Aβ−, n = 81) and mild cognitive impairment (MCI Aβ−, n = 26) participants were compared with Aβ-PET–positive participants across the AD continuum (CU Aβ+, n = 39; MCI Aβ+, n = 33; AD Aβ+, n = 46) from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) cohort. Longitudinal plasma biomarker changes were also assessed in MCI (n = 27) and AD (n = 29) participants compared with CU (n = 120) participants. In addition, associations between baseline plasma biomarker levels and prospective cognitive decline and Aβ-PET load were assessed over a 7 to 10-year duration. Results Lower plasma Aβ1-42/Aβ1-40 ratio and elevated p-tau181 and GFAP were observed in CU Aβ+, MCI Aβ+, and AD Aβ+, whereas elevated plasma NfL was observed in MCI Aβ+ and AD Aβ+, compared with CU Aβ− and MCI Aβ−. Among the aforementioned plasma biomarkers, for models with and without AD risk factors (age, sex, and apolipoprotein E (APOE) ε4 carrier status), p-tau181 performed equivalent to or better than other biomarkers in predicting a brain Aβ−/+ status across the AD continuum. However, for models with and without the AD risk factors, a biomarker panel of Aβ1-42/Aβ1-40, p-tau181, and GFAP performed equivalent to or better than any of the biomarkers alone in predicting brain Aβ−/+ status across the AD continuum. Longitudinally, plasma Aβ1-42/Aβ1-40, p-tau181, and GFAP were altered in MCI compared with CU, and plasma GFAP and NfL were altered in AD compared with CU. In addition, lower plasma Aβ1-42/Aβ1-40 and higher p-tau181, GFAP, and NfL were associated with prospective cognitive decline and lower plasma Aβ1-42/Aβ1-40, and higher p-tau181 and GFAP were associated with increased Aβ-PET load prospectively. Discussion These findings suggest that plasma biomarkers are altered cross-sectionally and longitudinally, along the AD continuum, and are prospectively associated with cognitive decline and brain Aβ-PET load. In addition, although p-tau181 performed equivalent to or better than other biomarkers in predicting an Aβ−/+ status across the AD continuum, a panel of biomarkers may have superior Aβ−/+ status predictive capability across the AD continuum

    Plasma high‐density lipoprotein cargo is altered in Alzheimer's disease and is associated with regional brain volume

    Get PDF
    Cholesterol levels have been repeatedly linked to Alzheimer's Disease (AD), suggesting that high levels could be detrimental, but this effect is likely attributed to Low-Density Lipoprotein (LDL) cholesterol. On the other hand, High-Density Lipoproteins (HDL) cholesterol levels have been associated with reduced brain amyloidosis and improved cognitive function. However, recent findings have suggested that HDL-functionality, which depends upon the HDL-cargo proteins associated with HDL, rather than HDL levels, appears to be the key factor, suggesting a quality over quantity status. In this report, we have assessed the HDL-cargo (Cholesterol, ApoA-I, ApoA-II, ApoC-I, ApoC-III, ApoD, ApoE, ApoH, ApoJ, CRP, and SAA) in stable healthy control (HC), healthy controls who will convert to MCI/AD (HC-Conv) and AD patients (AD). Compared to HC we observed an increased cholesterol/ApoA-I ratio in AD and HC-Conv, as well as an increased ApoD/ApoA-I ratio and a decreased ApoA-II/ApoA-I ratio in AD. Higher cholesterol/ApoA-I ratio was also associated with lower cortical grey matter volume and higher ventricular volume, while higher ApoA-II/ApoA-I and ApoJ/ApoA-I ratios were associated with greater cortical grey matter volume (and for ApoA-II also with greater hippocampal volume) and smaller ventricular volume. Additionally, in a clinical status-independent manner, the ApoE/ApoA-I ratio was significantly lower in APOE ε4 carriers and lowest in APOE ε4 homozygous. Together, these data indicate that in AD patients the composition of HDL is altered, which may affect HDL functionality, and such changes are associated with altered regional brain volumetric data

    The association between Alzheimer's Disease-Related markers and physical activity in cognitively normal older adults

    Get PDF
    Previous studies have indicated that physical activity may be beneficial in reducing the risk for Alzheimer's disease (AD), although the underlying mechanisms are not fully understood. The goal of this study was to evaluate the relationship between habitual physical activity levels and brain amyloid deposition and AD-related blood biomarkers (i.e., measured using a novel high-performance mass spectrometry-based assay), in apolipoprotein E (APOE) ε4 carriers and noncarriers. We evaluated 143 cognitively normal older adults, all of whom had brain amyloid deposition assessed using positron emission tomography and had their physical activity levels measured using the International Physical Activity Questionnaire (IPAQ). We observed an inverse correlation between brain amyloidosis and plasma beta-amyloid (Aβ)1−42 but found no association between brain amyloid and plasma Aβ1−40 and amyloid precursor protein (APP)669−711. Additionally, higher levels of physical activity were associated with lower plasma Aβ1−40, Aβ1−42, and APP669−711 levels in APOE ε4 noncarriers. The ratios of Aβ1−40/Aβ1−42 and APP669−711/Aβ1−42, which have been associated with higher brain amyloidosis in previous studies, differed between APOE ε4 carriers and non-carriers. Taken together, these data indicate a complex relationship between physical activity and brain amyloid deposition and potential blood-based AD biomarkers in cognitively normal older adults. In addition, the role of APOE ε4 is still unclear, and more studies are necessary to bring further clarification

    Identification of leukocyte surface P2X7 as a biomarker associated with Alzheimer\u27s disease

    Get PDF
    Alzheimer\u27s disease (AD) has shown altered immune responses in the periphery. We studied P2X7 (a proinflammatory receptor and a scavenger receptor) and two integrins, CD11b and CD11c, on the surface of circulating leukocytes and analysed their associations with Aβ-PET, brain atrophy, neuropsychological assessments, and cerebrospinal fluid (CSF) biomarkers. Total 287 age-matched, sex-balanced participants were recruited in a discovery cohort and two validation cohorts through the AIBL study and studied using tri-colour flow cytometry. Our results demonstrated reduced expressions of P2X7, CD11b, and CD11c on leukocytes, particularly monocytes, in Aβ +ve cases compared with Aβ -ve controls. P2X7 and integrin downregulation was observed at pre-clinical stage of AD and stayed low throughout disease course. We further constructed a polygenic risk score (PRS) model based on 12 P2RX7 risk alleles to assess the genetic impact on P2X7 function in AIBL and ADNI cohorts. No significant association was identified between the P2RX7 gene and AD, indicating that P2X7 downregulation in AD is likely caused by environmental changes rather than genetic factors. In conclusion, the downregulation of P2X7 and integrins at pre-clinical stage of AD indicates altered pro-inflammatory responses, phagocytic functions, and migrating capabilities of circulating monocytes in early AD pathogenesis. Our study not only improves our understanding of peripheral immune involvement in early stage of AD but also provides more insights into novel biomarker development, diagnosis, and prognosis of AD
    corecore