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RESEARCH

Assessment of a polygenic hazard score 
for the onset of pre-clinical Alzheimer’s disease
Michael Vacher1,2,3*, Vincent Doré4,5, Tenielle Porter2,3,6, Lidija Milicic2,3, Victor L. Villemagne2,7, 
Pierrick Bourgeat8, Sam C. Burnham2,4, Timothy Cox4, Colin L. Masters9, Christopher C. Rowe5, Jurgen Fripp8, 
James D. Doecke2,8 and Simon M. Laws2,3,6 

Abstract: Background: With a growing number of loci associated with late-onset (sporadic) Alzheimer’s disease (AD), 
the polygenic contribution to AD is now well established. The development of polygenic risk score approaches have 
shown promising results for identifying individuals at higher risk of developing AD, thereby facilitating the develop-
ment of preventative and therapeutic strategies. A polygenic hazard score (PHS) has been proposed to quantify 
age-specific genetic risk for AD. In this study, we assessed the predictive power and transferability of this PHS in an 
independent cohort, to support its clinical utility.

Results: Using genotype and imaging data from 780 individuals enrolled in the Australian Imaging, Biomarkers and 
Lifestyle (AIBL) study, we investigated associations between the PHS and several AD-related traits, including 1) cross-
sectional Aβ-amyloid (Aβ) deposition, 2) longitudinal brain atrophy, 3) longitudinal cognitive decline, 4) age of onset. 
Except in the cognitive domain, we obtained results that were consistent with previously published findings. The PHS 
was associated with increased Aβ burden, faster regional brain atrophy and an earlier age of onset.

Conclusion: Overall, the results support the predictive power of a PHS, however, with only marginal improvement 
compared to apolipoprotein E alone.
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Introduction
The ε4 allele of the apolipoprotein E (APOE) gene is the 
strongest genetic risk factor for late onset AD [1]. How-
ever, polygenic or oligogenic [2] contributions to AD 
are now widely acknowledged. In recent years, genome 
wide association studies (GWAS) and next-generation 
sequencing efforts have facilitated the identification of 
a number of disease-onset-associated single nucleotide 
polymorphisms (SNPs) with much smaller effect size 

[3, 4]. Collectively, these genetic variations could make 
a significant contribution to age-at-onset AD risk. The 
combined effect of these inherited genetic variations 
can be quantified and expressed as a polygenic risk score 
(PRS). The development and validation of a reliable PRS 
for AD could contribute to solving a major public health 
challenge by identifying the age-at-onset of individu-
als at high risk of developing the disease and therefore 
enable early screening and preventive therapies [5]. Typi-
cally, PRSs are constructed as the weighted sum of allele 
counts, where the weights correspond to the effects (β 
coefficients) of each SNP, extracted from a SNPs-disease 
association analysis (e.g. logistic regression for case-
control studies) [6]. The development of PRSs for age-at-
onset of AD have demonstrated promising results with 
prediction capabilities showing over 80% accuracy in 
some cases [7, 8].
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A polygenic hazard score (PHS) approach has also been 
developed for AD [9]. This PHS goes beyond AD risk 
prediction by providing estimates of individual age-spe-
cific risk for developing AD. Moreover, the PHS has been 
shown to be associated with Aβ-amyloid (Aβ) accumula-
tion, accelerated cognitive decline and neurodegenera-
tion in susceptible brain regions. In this study we aim to 
assess the useability and replicability of PHS in an inde-
pendent cohort.

Materials and methods
Sample population
The study used data from the Australian Imaging, Bio-
markers and Lifestyle (AIBL) cohort, of which the design, 
enrolment process, neuropsychological assessments and 
diagnostic criteria have been previously described [10]. 
Of the 1572 participants enrolled in the AIBL study, we 
restricted the analysis to individuals having both geno-
type and imaging data available (N = 780). Longitudinal 
data was collected every 18 months over multiple years 
(mean = 4.8 years, SD = 2.1). Participants were classified 
as those with Mild Cognitive Impairment (MCI) [11] or 
AD [12] when the clinical criteria for diagnosis were met. 
In the absence of these features a classification of Cogni-
tively Normal (CN) was given by a clinical review panel, 
blinded to Aβ-PET status (see below). Ethics approval for 
the AIBL study and all experimental protocols was pro-
vided by Austin Health, St Vincent’s Health, Hollywood 
Private Hospital and Edith Cowan University. All experi-
ments and methods were carried out in accordance with 
approved guidelines and regulations and all volunteers 
gave written informed consent before participating in the 
study.

MRI and PET imaging
All subjects underwent a 3 T MRI and Aβ-PET imag-
ing. T1 MPRAGE MRI was obtained at 3 T using the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
magnetization-prepared rapid gradient echo (MPRAGE) 
protocol, with in-plan resolution of 1 × 1 mm and 1.2 mm 
slice thickness. Freesurfer was used to estimate all corti-
cal volumes from the T1 [13]. All volumes were corrected 
for age and ICV using a regression approach and refer-
ence population composed of healthy subjects (CN, Aβ 
negative, MMSE> 28, CDR = 0, APOE non-ε4). Left and 
right volumes were averaged.

Aβ-PET imaging was performed with one of five 
radiotracers:  [11C]-PiB,  [18F]-flutemetamol (FLUTE), 
 [18F]-florbetapir (FBP),  [18F]-florbetaben (FBB), and 
 [18F]-NAV4694 (NAV). A 20- minute acquisition was per-
formed 50 minutes post-injection of PiB, NAV and FBP, 
and 90 minutes post-injection of FLUTE and FBB. Due to 
the difference in SUVR dynamic ranges of each Aβ tracer, 

the Centiloid (CL) scale was used to provide a standard 
scale for Aβ-PΕΤ quantification [14], with 0 representing 
the typical Aβ-PΕΤ in young controls, and 100 the typi-
cal Aβ-PET in mild AD patients. Values equal to or above 
20 CL were considered representative of abnormal levels 
of Aβ deposition [15]. CL were generated using CapAIBL 
software [14] and estimated in three regions of interest 
(whole neocortex, frontal and posterior cingulate). CL 
values were also projected onto the individual cortical 
surface and then transferred to a cortical atlas where sta-
tistical analyses were performed [16].

Cognitive scores
All AIBL participants complete a battery of neuropsycho-
logical tests as previously described [10]. The resulting 
data were used to calculate cognitive composite scores to 
assess recognition memory, executive function and epi-
sodic recall memory. Briefly, the composites were com-
puted by standardising the outcome measure for each 
neuropsychological test to be included, using the baseline 
mean and standard deviation for the cognitively normal 
sample, then averaging those standardised scores. Each 
composite consists of the following tests; recognition 
memory (California Verbal Learning Test Second Edition 
and Rey Complex Figure Test), executive function (Con-
trolled Oral Word Association Test and Category Switch-
ing), and episodic recall memory (California Verbal 
Learning Test Second Edition, Logical Memory II, and 
Rey Complex Figure Test) (Harrington reference). Clini-
cal Dementia Rating (CDR) sum of boxes (CDRSB) score 
was also used to assess clinical progression.

Age of onset definition
The age of onset of abnormal levels of amyloid deposi-
tion was determined as follows: First a progression curve 
giving for Aβ-amyloid deposition as a function of disease 
progression time was constructed as described in [17, 
18]. Then, the participants’ age of onset was estimated 
by using the progression curve to calculate the elapsed 
time between a participant passing the CL threshold 
and reaching their mean longitudinal Aβ-amyloid levels. 
Finally, this value was subtracted from their mean longi-
tudinal age to get the age at onset.

Genetic data and Polygenic hazard score
Genome wide genetic data was ascertained from the 
OmniExpressHumanExome+ BeadChip (Illumina, 
USA) as previously described [10]. A polygenic hazard 
score was then derived from this genetic data for each 
individual following the methodology described previ-
ously [9]. Briefly, the approach consists in three steps. 
First, a list of 1854 SNPs implicated with AD (p-values 
<  10− 5) was extracted from the published summary 
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statistics (p-values and odds ratios) generated by the 
IGAP consortium [4]. Second, a forward stepwise regres-
sion to identify a subset of 31 SNPs, in addition to the 
two APOE variants, that were associated with AD age 
of onset. Finally, for each patient, a polygenic hazard 
score predicting the individual’s risk of developing AD, 
given their polygenic profile and age was derived. In the 
analyses we assessed the PHS as a continuous measure, 
quantifying individual risk for AD, and as a dichotomous 
variable (high and low). To directly replicate the findings 
from Tan et al. [19], we used the same grouping method, 
defining high PHS by 1 standard deviation (SD) above the 
mean and low PHS by 1 SD below the mean (Supplemen-
tary Fig. 1).

Statistical analyses
Association with cross‑sectional Aβ deposition
We used linear regression to investigate the relationship 
between PHS and regional brain Aβ deposition at base-
line. Three main areas were investigated: neocortical, fron-
tal cortex and posterior cingulate. In this cross-sectional 
analysis, we controlled for age, gender, level of education 
in years and APOE ε4 status (0 = no ε4 allele, 1 = 1 or 2 ε4 
alleles). To evaluate the contribution of PHS and APOE 
ε4 status in the linear regression, we used likelihood ratio 
tests to compare models with and without these terms.

To further assess the association between PHS and 
Aβ deposition, beyond the role APOE, we performed 
the same analysis in two sub-cohorts containing exclu-
sively APOE ε4 carriers (N = 278; CN = 161, MCI = 58, 
AD = 59) and non-carriers (N = 502; HC = 412, 
MCI = 66, AD = 24). In these subsequent analyses, we 
used the same linear regression, however, we did not 
control for APOE ε4 status due to the lack of variation in 
these sub-populations. All the results were adjusted for 
multiple comparisons using false discovery rate (FDR). 
The same analysis was performed at a vertex level on a 
template cortical surface.

Association with regional brain atrophy
We used linear mixed-effects models to evaluate the 
relationship of PHS with longitudinal volume change in 
33 regions of interest from the Desikan-Killiany atlas in 
Freesurfer [20]. As volumes were previously controlled 
for intra-cranial volume (ICV) and age using a healthy 
sub-population we only controlled for gender, level of 
education in years and APOE ε4 status (0 = no ε4 allele, 
1 = 1 or 2 ε4 alleles). In these analyses, we also controlled 
for sex, education, and APOE status. We then examined 
the simple effects by comparing slopes of volume loss 
over time for individuals at high (+ 1 SD) and low (− 1 
SD) levels of PHS [19, 21].

Association with longitudinal cognitive decline
For comparative purposes, we used the same linear 
mixed effects models as described in the original Desikan 
paper [19]. The only deviation made from this model was 
the use of the CL value from the frontal cortex instead of 
the standard uptake volume ratio (SUVR). Therefore, the 
final linear mixed effect model was defined as follows:

This model was used to investigate the association 
between PHS and cognitive decline and clinical progres-
sion rate (represented as Δc) across four measures: recog-
nition, executive function, episodic recall and CDR-SB. In 
this model, Time represented the number of years since 
the baseline visit. The APOE term indicated the pres-
ence/absence of APOE ε4 allele, encoded as a binary 
variable (0 = no ε4 allele, 1 = 1 or 2 ε4 alleles) and the 
term (1| Patient) corresponded to the random intercept. 
Continuous variables were centred and scaled in all the 
analyses. Further, to assess the original model and limit 
potential over-specification, we used a stepwise variable 
selection approach (backward selection) and identified 
a reduced model based on superior model fit (Akaike 
information criterion).

Association with age of onset of abnormal levels of Aβ 
deposition
Cox proportional hazards models of survival were per-
formed to compare the time taken to reach abnormal 
levels of neocortical Aβ between participants with low 
versus high PHS scores (threshold at 1.04), adjusted base-
line age, gender and years of education. The definition for 
survival time was the number of years between birth and 
a) having a PET scan indicating abnormal levels of Aβ 
(classed here an event, age of onset), b) withdrawing from 
the study (censored), or c) the last completed follow-up 
examination without an event (censored). For some indi-
viduals it was necessary to impute the date at which their 
Aβ levels became abnormal as previously published [22]. 
The age at which 50% of the cohort (median age) reached 
abnormal levels of Aβ, was reported.

Results
Demographics
The study was conducted on a cohort of 780 partici-
pants enrolled in the AIBL study [23] (422 females, 
358 males). Population demographic information is 

Δc = �
0
+ �

1
PHS ∗ Time + �

2
Centiloid(fc)

∗ Time + �
3
enthorinal cortex volume

∗ Time + �
4
Baseline Age ∗ Time + �

5
Sex

∗ Time + �
6
Education

∗ Time + �
7
APOE ∗ Time + (1|Patient)
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displayed in Table  1. Comparing demographic and 
clinical characteristics between diagnoses, AD partici-
pants were older than CN and MCI participants (AD: 
75.0 [SD: 7.85], MCI: 75.6 [SD: 7.13], CN: 72.9 [SD: 
6.12], p < 0.001) and were more likely to carry at least 
one copy of APOE ε4 allele (AD: 71.1%, MCI: 46.8%, 
HC: 28.1%, p < 0.001). As expected, the PHS were sig-
nificantly higher in AD participants (AD: 0.847 [SD: 
0.941], MCI: 0.415 [SD: 0.967], CN: 0.0271 [SD: 0.763], 
p = 8.25e− 08). This result was consistent in the sub-pop-
ulation consisting of APOE ε4 carriers only (AD: 1.33 
[SD: 0.62], MCI: 1.29 [SD: 0.66], CN: 1.04 [SD: 0.55], 
p = 9.55e− 4). However, in the APOE ε4 non-carrier 

subgroup, the difference of PHS across clinical classi-
fication was not seen (AD: -0.35 [SD: 0.31], MCI: -0.35 
[SD: 0.34], CN: -0.37 [SD: 0.36], p = 0.895).

Association with cross‑sectional Aβ deposition
Using linear regression to evaluate the relationship 
between PHS and Aβ burden at baseline, we found that 
increased PHS values were associated with higher Aβ 
deposition. Similar results were obtained when looking 
at CL values specifically in the three areas investigated, 
neocortical, frontal cortex and posterior cingulate, with 
stronger effects systematically obtained in the posterior 
cingulate region, followed by the frontal cortex and then 

Table 1 Population characteristics

P values determined by Fisher’s test (APOE ε4 and Gender), t-test (age), and Chi square analyses

N number, CN cognitively normal, MCI mild cognitive impairment, AD Alzheimer’s disease, APOE ε4 apolipoprotein ε4 allele

CN (N = 573) MCI (N = 124) AD (N = 83) P‑value

Sex
 Female 318 (55.5%) 56.0 (45.2%) 48.0 (57.8%) 0.0859

 Male 255 (44.5%) 68.0 (54.8%) 35.0 (42.2%)

Age (years)
 Mean (SD) 72.9 (6.12) 75.6 (7.13) 75.0 (7.85) < 0.001

 Median [Min, Max] 72.7 [60.0, 93.6] 76.3 [56.1, 95.4] 74.8 [57.8, 93.2]

APOEε4
 Absent 412 (71.9%) 66.0 (53.2%) 24.0 (28.9%) < 0.001

 Present 161 (28.1%) 58.0 (46.8%) 59.0 (71.1%)

Education (years)
 0–6 1.00 (0.2%) 1.00 (0.8%) 2.00 (2.4%) 0.0148

 7–12 41.0 (7.2%) 17.0 (13.7%) 11.0 (13.3%)

 9–12 213 (37.2%) 50.0 (40.3%) 29.0 (34.9%)

 13–15 118 (20.6%) 22.0 (17.7%) 20.0 (24.1%)

 15+ 200 (34.9%) 34.0 (27.4%) 21.0 (25.3%)

PHS
 Mean (SD) 0.0271 (0.763) 0.415 (0.967) 0.847 (0.941) < 0.001

 Median [Min, Max] −0.178 [−1.60, 2.59] 0.162 [−1.26, 3.12] 1.01 [−1.06, 2.91]

Table 2 Association between PHS and cross-sectional Aβ deposition

Population N [CN/MCI/AD] Region beta SE CI 95% FDR‑adjusted p

Whole Cohort 780 [573/124/83] neocortical 19.98 2.91 [14.3–25.7] 1.44E-10

posterior cingulate 25.54 3.61 [18.4–32.6] 7.41E-11

frontal cortex 21.19 3.15 [15.0–27.4] 2.51E-10

APOE ε4 carriers 278 [161/58/59] neocortical 25.28 4.00 [17.4–33.2] 5.17E-08

posterior cingulate 33.06 4.94 [23.3–42.8] 7.88E-09

frontal cortex 26.63 4.38 [18.0–35.3] 1.31E-07

APOE ε4 non carriers 502 [412/66/24] neocortical 12.61 4.43 [3.90–21.3] 1.25E-02

posterior cingulate 14.28 5.53 [3.42–25.1] 2.43E-02

frontal cortex 13.62 4.77 [4.24–23.0] 1.25E-02
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the neocortical region (Table 2). These results were con-
sistent in the sub-populations composed exclusively of 
APOE ε4 carriers and non-carriers, although with less 
significant effects. We then used likelihood ratio tests to 
determine if the addition of PHS and APOE ε4 status in a 
model resulted in improvements in the fit. The addition 
of APOE ε4 status (β = 39.5, SE = 2.8, p = 8.05e− 39) and 
PHS (β = 24.2, SE = 1.55, p = 3.74e− 48), individually, both 
resulted in statistically significant improvements from 
a base model controlling for age, gender and education 
only. However, the addition of PHS in a model already 
controlling for APOE ε4 status was not significant in any 
of the three areas investigated (frontal cortex, p = 0.066; 
posterior cingulate, p = 0.1306; neocortical, p = 0.08).

Association with regional brain atrophy
In the linear-mixed effect analysis, PHS was signifi-
cantly associated with cortical volume changes in most 
regions of interest. The effects were strongest in regions 
from the AD cortical signature, including temporal lobe, 

entorhinal cortex, posterior cingulate and precuneus. 
The cortical atrophy was fastest in individuals with high 
PHS (Fig.  1). However, when looking at non-ε4 carriers 
only, none of the associations between PHS and cortical 
atrophy remained significant after controlling for multi-
ple comparisons. In addition, the effect sizes were con-
siderably reduced (Supplementary Fig. 2).

Association with cognitive decline
In the linear mixed model analyses, we did not find 
any significant association between PHS and cognitive 
decline. The analyses were restricted to non-AD individ-
uals (CN + MCI and CN only) and the results were con-
sistent across the three cognitive domains investigated 
(Table 3). Further, comparing individuals with high PHS 
against low PHS, there was no significant difference in 
rate of cognitive decline between the two groups. Like-
lihood ratio tests comparing linear-mixed effects models 
with and without the PHS term, showed that the pres-
ence of PHS in the model resulted in minor improvement 

Fig. 1 PHS is associated with local Aβ and cortical atrophy. Beta estimates of (A) the associations of PHS with cross-sectional voxel-wise CL and (B) 
Longitudinal change in regional cortical volumes in individuals with high (1 SD above mean, ∼ 84 percentile) PHS

Table 3 Associations between PHS and cognitive decline

Population N Domain beta SE CI 95% p

CN + MCI 697 CDR SoB 0.004 0.014 [0.023–0.03] 0.747

Episodic Recall 0.007 0.011 [−0.014–0.028] 0.519

Executive Function − 0.023 0.014 [− 0.05–0.003] 0.086

CN 573 CDR SoB 0.023 0.017 [−0.01–0.056] 0.174

Episodic Recall 0.001 0.013 [−0.024–0.026] 0.948

Executive Function −0.018 0.015 [−0.047–0.011] 0.225
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in CDR-SB (X2 = 6.29, p = 0.043) and Episodic recall 
(X2 = 6.58, p = 0.037). However, the addition of PHS did 
not result in a better fit in the model predicting Executive 
function (X2 = 2.83, p = 0.24).

Association with age of onset of abnormal levels of Aβ 
deposition
The age of onset of individuals with a high PHS (> 1.04) 
was significantly lower than individuals with a low PHS 
(<− 0.67). The median age at which AIBL participants 
with a high PHS reached abnormal levels of Aβ (Fig.  2) 
was 67.6 years (CI 95% [65.6, 68.6]), 12.4 years earlier 
than those with a low PHS (80 years, CI 95% [78.3, 82.4]). 
The hazard ratio comparing the high PHS versus the 
low PHS group was 3.9 (CI 95% [3.1, 4.9], log rank test 
p = 3.72e− 17). Restricting this analysis to ε3/ε3 individuals 
only, the high PHS group still had an earlier age of onset 
(73.9 years, CI 95% [72.4, 78.2]) compared to the low PHS 
population (82.4 years, CI 95% [76.8.4, 84.2]), with a haz-
ard ratio of 1.8 (CI 95% [0.9, 3.2], log rank test p = 0.072).

Discussion
Over the last decade, GWAS have clearly demonstrated 
that common complex diseases are typically associated 
with hundreds or thousands of genetic markers, collec-
tively contributing to disease risk. This highly polygenic 
underpinning has been utilised in PRS by aggregating the 
effect of multiple genetic variants into a single score to 
predict disease risk. PRS have shown predictive values in 
several complex disorders, however, the approach does 
not account for age of onset, which is critical for neu-
rodegenerative disease such as AD. The recent develop-
ment of polygenic hazard score overcomes this limitation 
by predicting individuals’ age-specific risk of AD devel-
opment [9]. In this study, we attempted to replicate the 
findings from Tan et  al. [19] and assess the utility of a 
PHS in an independent cohort. While investigating the 
relationship between PHS and cross-sectional Aβ deposi-
tion, we found that the PHS had slightly better predicting 
capabilities than using APOE ε4 status alone. This result 
was expected considering the effects of the APOE ε2 and 

Fig. 2 Kaplan-Meier plot showing the age of onset, defined as the age at which individual reach an abnormal level of Aβ (CL ≥ 20). The population 
was stratified by PHS, high (mean + 1 SD) versus low (mean – 1 SD). Shaded areas indicate 95% confidence intervals
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ε4 alleles were already accounted for in the calculation of 
the PHS. However, the marginal improvement in mod-
els to predict Aβ deposition observed when using PHS, 
suggests that the number of APOE ε4 alone can provide 
comparable predictive information. The major contribu-
tion of APOE in the PHS definition is evident when look-
ing at the stratified score distribution (Supplementary 
Fig. 1). Individuals falling in the low PHS bracket (1 SD 
below the mean) are all ε4 non-carriers, while all ε4/ε4 
individuals, conversely, are found in the high PHS group 
(1 SD above the mean). Nonetheless, we were able to find 
associations between PHS and regional Aβ deposition 
and brain atrophy in non-ε4 individuals. Although with 
relatively small effect sizes, these associations are con-
sistent with the findings reported by Tan et al. [19] and 
support the claim that the PHS can provide predicting 
capabilities beyond APOE status.

Investigating cognitive domains, we did not find any 
evidence of association between PHS and longitudinal 
cognitive decline. These analyses were performed on 
non-demented individuals (N = 697) with a proportion 
of 82% CN and 18% MCI. This ratio was very different 
from the study cohort utilised in Tan et  al., which con-
sisted of about 36% CN and 64% MCI. Considering that 
healthy individuals have a much less pronounced cogni-
tive decline trajectory, the over-representation of CN 
in our dataset could have impacted the results. Further, 
the linear mixed model used in this study was slightly 
different than the one presented in the original paper. 
Specifically, we used the CL values instead of the frontal 
florbetapir SUVR. Although, it is not expected that this 
deviation would generate differing results, they could 
have impacted and decreased the strength of the associa-
tions between PHS and cognitive decline.

Investigating the associations between PHS and age 
of onset, we found that individuals with a high PHS had 
a significantly younger age of onset (67.6 years) than 
low PHS individuals (80 years). Among the APOE ε3/ε3 
population, high PHS individuals had an expected age 
of onset approximatively 8 years younger than low PHS 
individuals. Although the difference was less noticeable 
in the ε3/ε3 population, this result showed that the poly-
genic information, beyond the APOE ε4 allele, was useful 
for predicting the age of disease onset.

Compared to traditional polygenic risk scores, which 
provide a lifetime risk of developing a disease, the poly-
genic hazard scores provide prediction on age-specific 
risk of disease development. This estimation of instan-
taneous risk for developing AD is valuable additional 
information, as it could improve monitoring disease 
progression and facilitate timely intervention. In this 
study, we showed that the PHS had utility in predicting 
abnormal Aβ deposition, brain atrophy and age of disease 

onset. However, the results suggested that APOE geno-
type alone could provide comparable predictive capabili-
ties, suggesting that APOE remains the main component 
of the PHS. This disproportionate contribution is mainly 
due to the large weight attributed to APOE alleles, which 
shadows the less extensive effects of the other disease-
associated variants utilised in the score calculation. This 
is the case in both PRS and PHS approaches and reflect 
the difficulty in classifying AD genetic risk above and 
beyond APOE ε4. Recent studies have suggested that 
the use of less stringent significance threshold for SNPs 
selection could results in better performing scores [7, 
8, 24]. This strategy could potentially further improve 
the prediction accuracy of the PHS. However, caution 
must be taken as the inclusion of many SNPs could lead 
to over-specification and result in a score that performs 
poorly in other cohorts. Furthermore, in addition to non-
modifiable factors, PHS and PRS could both be enriched 
with the introduction of lifestyle and environmental fac-
tors, known to be associated with the disease. Moving 
forward, we can anticipate that combining genetic, life-
style and environmental components will facilitate the 
development of more refined and personalised risk pro-
files that will become relevant in clinical settings.
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