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Validation of a priori candidate 
Alzheimer’s disease SNPs with 
brain amyloid-beta deposition
Michael Vacher   1*, Tenielle Porter   2,3, Victor L. Villemagne4,5,6, Lidija Milicic2, 
Madeline Peretti2, Christopher Fowler5, Ralph Martins7, Stephanie Rainey-Smith7, 
David Ames8, Colin L. Masters5, Christopher C. Rowe4,6, James D. Doecke   10 & 
Simon M. Laws   2,3,9

The accumulation of brain amyloid β (Aβ) is one of the main pathological hallmarks of Alzheimer’s 
disease (AD). However, the role of brain amyloid deposition in the development of AD and the genetic 
variants associated with this process remain unclear. In this study, we sought to identify associations 
between Aβ deposition and an a priori evidence based set of 1610 genetic markers, genotyped from 505 
unrelated individuals (258 Aβ+ and 247 Aβ−) enrolled in the Australian Imaging, Biomarker & Lifestyle 
(AIBL) study. We found statistically significant associations for 6 markers located within intronic regions 
of 6 genes, including AC103796.1-BDNF, PPP3R1, NGFR, KL, ABCA7 & CALHM1. Although functional 
studies are required to elucidate the role of these genes in the accumulation of Aβ and their potential 
implication in AD pathophysiology, our findings are consistent with results obtained in previous GWAS 
efforts.

Alzheimer’s disease is the most prevalent cause of dementia in elderly populations (age > 65 years). Currently 
affecting more than 40 million people worldwide, this number is projected to increase at least three-fold by 2050, 
with the continuing growth and ageing of the population. Hallmarks of disease pathology generally appear several 
years prior to the onset of clinical symptoms. Although the slow progression provides opportunities for preclini-
cal therapeutic interventions, our ability to accurately detect the disease remains limited.

The accumulation of Aβ occurs at a variable rate early in the development of AD, starting over 20 years before 
the onset of cognitive decline and structural brain atrophy1,2. The process is a well-recognised histopathological 
hallmark of AD, and Aβ deposition is necessary for the pathologic diagnosis of the disease. However, the forma-
tion of Aβ plaques alone is not sufficient to cause cognitive dysfunction. Individuals with high Aβ accumulation 
but no or minimal cognitive deficits have been observed in several studies3. In addition, recent studies have 
shown that the presence of substantial Aβ deposition had low specificity for predicting the development of AD4,5. 
These observations reflect the intricate contribution of Aβ formation in the development of AD, and the need for 
more research in the developmental processes of the disease.

This complex pathogenesis of AD involves multiple external risk factors and comorbidities with varying sus-
ceptibilities based upon genetic backgrounds. In recent years, genome-wide association studies (GWAS) have 
identified more than 20 genetic risk loci robustly associated with the disease6–10. Large meta-analyses such as 
the one conducted by the International Genomics of Alzheimer’s Project (IGAP)11, have played a key role in 
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enhancing our ability to predict the risk of disease onset and expanding our knowledge around the aetiology of 
the disease. However, most case-control GWAS have focused on identifying variants associated with the patho-
logic clinical diagnosis of AD compared with cognitively normal participants, even though there is a large dis-
crepancy in the specificity in this diagnosis. Further, there is growing evidence that susceptibility to Aβ-associated 
decline or rate of progression may be due to either vulnerability or resilience imparted by an individual’s genetic 
background12–15.

In this study, a total of 505 patients enrolled in the Australian Imaging, Biomarker & Lifestyle (AIBL) study, 
were genotyped for an a priori evidence based targeted selection of Single Nucleotide Polymorphisms (SNPs), 
with rationale to identify possible Aβ specific variants, from a large list of AD-related candidate genes.

Results
We conducted an association analysis using 1610 genetic markers from 505 unrelated participants of the AIBL 
study (258 cases and 247 controls). Comparing demographic and clinical characteristics between Aβ status, Aβ+ 
participants were older (72.3 [SD:6.94] vs 69.1 [SD:6.3], p < 0.0001) and were more likely to have an APOE ε4 
allele (40% vs 12%, p < 0.0001, Table 1). As expected, there were no differences in the frequencies of males/females 
between Aβ groups (p > 0.05), and MCI and AD groups were more likely to be Aβ+ than Aβ− (p < 0.0001).

In preliminary analysis containing all the markers, the strongest associations (p < 1e−8) with amyloid sta-
tus corresponded to a set of 5 SNPs (rs429358, rs769449, rs6857, rs157581, rs2075650) located within a 20 kb 
region containing the apolipoprotein E (APOE, 3.6 kb) and the translocase of outer mitochondrial membrane 40 
(TOMM40, 12.4 kb) genes.

To enhance the identification of additional Aβ specific variants, we conducted the same association analysis 
including the presence/absence of the ε4 allele as a covariate. A total of 10 SNPs, located within 6 loci, showed 
nominal evidence for association (p < 5e−3). Results were clumped to keep only the most representative SNP 
per region of linkage disequilibrium, resulting in 6 independent SNPs (Table 2). Evidence of associations with 
previously established AD-specific loci include AC103796.1-BDNF (rs2049048; p = 3.62e−04; OR, 0.45 [95% CI, 
0.29–0.7]), PPP3R1 (rs7593613; p = 2.04e−03; OR, 1.59 [95% CI, 1.18–2.13]), NGFR (rs9908234; p = 2.45e−03; 
OR, 2.47 [95% CI, 1.38–4.43]), KL (rs648202; p = 2.90e−03; OR, 1.84 [95% CI, 1.23–2.75]), ABCA7 (rs3764650; 
p = 3.07e−03; OR, 2.01 [95% CI, 1.27–3.2]), CALHM1 (rs2986018; p = 4.16e−03; OR, 1.59 [95% CI, 1.16–2.18]), 
Table 2. Details of the genotyped markers and their associated p values are presented in Supplementary Table 1.

Comparing SNPs at nominal significance for Aβ in this study with the IGAP results, all but one marker 
(NGFR, rs9908234) was also found significantly associated with AD in the IGAP study. This limited overlap is 
explained by the use of different proxy SNPs between this study and the IGAP study. For example, the variant 
rs3764650 in the ABCA7 gene was typed in this study and reached nominal significance. Although this specific 
variant is not present in IGAP, it is located in the same LD block (r2 > 0.9) as four other markers (rs73505217, 
rs4147911, rs4147910, rs76348507) that reached genome-wide significance in the IGAP meta-analysis. Figure 1 

Total Aβ− Aβ+ p-value

N 505 247 258

Male, N (%) 236 109 (46.2%) 127 (53.8%) 0.28

Female, N (%) 269 138 (51.3%) 131 (48.7%)

Mean Age, year (SD) 70.75 (6.83) 69.12 (6.33) 72.31 (6.94) <0.0001

APOE ε4 N (%) 174 41 (23.6%) 133 (76.4%) <0.0001

Diagnosis HC (%) 374 219 (58.6%) 155 (41.4%) <0.0001

Diagnosis MCI (%) 54 22 (40.7%) 32 (59.3%)

Diagnosis AD (%) 77 6 (7.8%) 71 (92.2%)

Marker PiB NAV (%) 326 157 (48.2%) 169 (51.8%) <0.0001

Marker Flutemetamol (%) 99 42 (42.4%) 57 (57.6%) <0.0001

Marker Florbetapir (%) 85 52 (61.2%) 33 (38.8%) <0.0001

Table 1.  Population characteristics. P values determined by Fisher’s test (APOE ε4 and Gender), t-test (age), 
and Chi square analyses (diagnosis). N number, HC healthy control, MCI mild cognitive impairment, AD 
Alzheimer’s disease, APOE ε4 apolipoprotein ε4 allele.

SNP CHR:POS GENE A1/A2 MAF (case/control) OR [L95, U95] P

rs2049048 11:27750586 AC103796.1-BDNF T/C 0.13 (0.09/0.09) 0.45 [0.29, 0.70] 3.62e-04

rs7593613 2:68483396 PPP3R1 T/A 0.40 (0.44/0.44) 1.59 [1.18, 2.13] 2.04e-03

rs9908234 17:49499986 NGFR G/A 0.07 (0.09/0.09) 2.47 [1.38, 4.43] 2.45e-03

rs648202 13:33635463 KL T/C 0.13 (0.17/0.17) 1.84 [1.23, 2.75] 2.90e-03

rs3764650 19:1046520 ABCA7 G/T 0.10 (0.13/0.13) 2.01 [1.27, 3.20] 3.07e-03

rs2986018 10:105218359 CALHM1 T/C 0.24 (0.28/0.28) 1.59 [1.16, 2.18] 4.16e-03

Table 2.  Significant SNPs and associated loci.
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shows a Manhattan plot of all SNPs tested in the current study, with the -log10 of the p-value on the y-axis, chro-
mosome on the x-axis, and dot colour representing the presence/absence of markers in the IGAP study.

Lastly, we assessed the gene ontologies and functional interactions amongst the genes that reached nominal 
significance using the GeneMANIA resource16. Through the gene-gene interaction network, we were able to 
demonstrate the presence of physical and genetic interactions between the identified genes and several other 
genes with similar biological functions (Fig. 2).

Discussion
As with most complex traits, multiple genetic variants with small and cumulative effects are likely to explain the 
heritability of AD. Consistent with this assumption, we identified robust associations with several previously 
established loci in a sample of cognitively normal and AD subjects. First, by identifying several markers located 
in the TOMM40-APOE region, our analysis supports the hypothesis that APOE on chromosome 19 is a major 
susceptibility gene for AD. The APOE ε4 allele has been associated with an increased risk of developing AD in a 
number of independent studies. Therefore, these results were expected but can be considered as a validation of 
our dataset. Aside from SNPs within the TOMM40-APOE locus, we identified a set of 6 variants at the nominal 
significance level showing evidence of association with Aβ status. A gene-gene interaction network revealed 
direct and indirect interactions amongst the 6 genes in which the genetic markers are located, suggesting a collec-
tive influence of genetic polymorphisms (Fig. 2).

The top-ranked SNP, rs7593613, was located in the regulatory subunit of the protein phosphatase B gene 
(PPP3R1), also known as calcineurin B. This marker was in high linkage disequilibrium (LD) with 2 other SNPs 
located on the same locus and showing significant associations with AD (rs28694054, p = 3.4e−03; rs11692815, 
p = 4.3e−03). Variants in PPP3R1 have been previously reported as potential modulators of tau and phospho-
rylated tau levels in the presence of amyloid deposition. These changes are suspected to result in an accelerated 
progression of AD17,18. Calcineurin is involved in a number of pathways that regulate synaptic activity and neu-
ronal excitability. Thereby, any impairment in this complex could have substantial effects and lead to pathological 
synaptic loss19.

The second top-ranked SNP identified, rs2049048, is located in the AC103796.1 gene and less than 7 kb from 
the brain-derived neurotrophic factor (BDNF). Although the role of AC103796.1 remains unclear, the gene over-
laps BDNF over 20 kb and therefeore, may contibute to its function. BDNF is a neurotrophin involved in synaptic 
plasticity, neurogenesis, neuronal survival, and cognitive health20. Changes in BDNF levels are not specific to 
AD and have been reported in a number of neuropsychiatric disorders. It remains a key target for therapeu-
tic treatment due to its pivotal role in the central nervous system21. Increasing evidence suggests that BDNF 
could modulate Aβ accumulation by decreasing Aβ formation22, limiting Aβ-mediated cell death23 and repair-
ing Aβ-related damages24. Our findings indicate that a specific polymorphism in the AC103796.1-BDNF gene 
region (rs2049048; p = 3.62e−04) is indeed over represented in those who were Aβ+. Another variant, rs6265, 
has been more widely investigated and found to be associated with reduced hippocampal volume25 and cognitive 
decline26–29. However, contradictory results have also been reported30,31, suggesting a more complex relationship 
between AC103796.1-BDNF and cognition. In our analyses, rs6265, did not show a significant association with 
Aβ accumulation (p = 0.7).

Another notable association was found with the variant rs9908234 (p = 2.45e−03), located in the nerve growth 
factor receptor (NGFR) gene which encodes for a cell surface receptor for neurotrophins. A gene-gene interaction 
network indicated that NGFR has multiple indirect interaction with other genes identified in this study, including 

Figure 1.  Simplified Manhattan plot for association results. The P values (−log 10) are plotted against their 
relative positions on each chromosome. To improve the visibility of the figure, positions correspond to the order 
in which the markers are located on the chromosomes. The threshold for significance was set to 5e10−3.
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AC103796.1-BNDF, ABCA7 and CALHM1 (Fig. 2). In a recent meta-analysis of genome-wide association for 
migraine, rs9908234, was the most significantly associated marker with the disorder32. Although the link between 
the two conditions remains unclear, migraines are known to cause micro brain lesions33 which are promoting 
the development of MCI and AD34,35. In addition to the interaction of NGFR with the aforementioned genes, 
it also binds one of the major receptors for NGF and has also been reported to bind directly to APP36,37. These 
studies and others38 postulate a relationship between APP processing/Aβ accumulation and NGF/NGF receptor 
mediated signaling pathways that warrants further investigation. This relationship is further supported by the 
association of genetic variation in NGFR with Aβ accumulation in the current study.

We also report an association between the rs648202 marker and Aβ accumulation (p = 2.90e−03). The marker 
is located in the klotho (KL) gene, which codes for a single-pass transmembrane protein involved in cellular 
metabolism and has been associated with several age-related diseases. Recent studies have shown that mutations 
of KL caused systemic aging and reduced longevity in mice34,35. Conversely, overexpression of the gene resulted 
in healthier aging and prolongation of life39,40. Thus, as a key modulator of the aging process, klotho has become 
a candidate of interest for the development of novel therapeutic treatment for AD41. However, the role of KL in 
the development of AD remains to be defined, as a recent study showed that a functional variant in KL, namely 
KL-VS, had no influence on cognitive decline in preclinical AD42. The rs648202 variant, associated with Aβ in 
this study, is in linkage disequilibrium (D’ = 1.0) with the KL-VS variants (rs9527025/rs9536314), however they 
are not highly correlated (r2 = 0.03).

The SNP, rs3764650, located in an intron of the ABCA7 gene showed a moderate association with Aβ accu-
mulation (p = 3.07e−03). This specific variant was identified as one of the main susceptibility loci for late-onset 
AD in two independent cohorts6,43. Furthermore, recent studies have shown that rs3764650 was associated with 
cortical and hippocampal atrophy in cognitively normal and mild cognitive impairment (MCI) subjects44 as well 
as with memory decline in MCI and late-onset AD patients45. In addition, ABCA7 has been identified as a major 
mediator of phagocytic clearance of Aβ46, which supports the reported association.

In CALHM1, the polymorphism rs2986018 showed marginal evidence for association (p = 4.16e−03). Several 
genetic epidemiological studies have suggested that rs2986017, a marker located in CALHM1 and within the same 
LD block as rs2986018, could influence age at onset of AD47–49. Although the underlying mechanisms by which 
CALHM1, which codes for a calcium channel, modulates AD’s pathogenesis remain unclear, it has recently been 
identified as a repressor of Aβ accumulation, in cell lines and in vivo50. These findings indicate that CALHM1 is 
potentially involved in Aβ degradation in the brain, a molecular mechanism highly relevant to AD’s pathogenesis.

In summary, although the present study was subject to a lack of power due to the limited number of cases and 
controls available, it provides suggestive evidence for the implication of several genes previously hypothesised to 
have a role in the development of AD, through the a priori evidence based approach employed for marker selec-
tion. Therefore, replication analyses in independent samples is warranted to confirm our findings and increase the 
significance of true associations. Whilst the nature of the marker selection employed in this study is a potential 
strength, the biased nature of this selection may have resulted in the exclusion of, as yet unknown, Aβ-associated 

Figure 2.  Gene-gene interaction network. The graph represents possible interactions between 6 genes in which 
variants associated with Aβ deposition were identified (black nodes). Indirect interactions are facilitated by the 
introduction of 4 external genes (gray nodes): Neurotrophin 4 (NTF4), Neurotrophic Receptor Tyrosine Kinase 
2 (NTRK2), Sortilin 1 (SORT1) and Calcineurin A Alpha (PPP3CA). Edges represent the type of interactions: 
physical interaction69–71) are colored in red and genetic interaction72 in green. The network was generated using 
GeneMANIA16.
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genetic variants. As such further unbiased approaches in larger sample sizes is also warranted. Finally, the 
approach undertaken here used a cross-sectional analysis of a dichotomised sample. The use of a continuous 
variable of Aβ-burden or longitudinal rates of accumulation may identify other genetic variants of interest.

Conclusion
With the increasing numbers of traits examined through genetic association analyses, it has become increasingly 
clear that individual genetic components are insufficient to explain complex phenotypes such as Alzheimer’s dis-
ease. Instead, such traits are most likely modulated by the collective influence of tens or even hundreds of genetic 
loci with small individual effects. In this study we identified 6 variants associated with the accumulation of Aβ, a 
key process in the pathogenesis of AD. The identified variants are located in the intronic regions of 6 distinct loci 
that are involved in major neurological and neurocognitive functions. Further studies are needed to fully under-
stand the role of these variants in the AD’s pathogenesis. However, this study opens doors to the investigation of 
novel biological targets for AD treatment to be considered in future studies.

Methods
Participants.  Data from the AIBL study, a prospective longitudinal study of ageing, is presented here. The 
AIBL study design, enrolment process, neuropsychological assessments and diagnostic criteria have been previ-
ously described51. Of the 1572 participants enrolled into the AIBL study 1416 of these underwent genetic analysis 
using the methodologies described below. Participants were classified as MCI52 or AD53 when the clinical criteria 
for diagnosis of was met. In the absence of these diagnoses a classification of cognitively normal (CN) was given 
by a clinical review panel, blinded to Amyloid-β status. Ethics approval for the AIBL study and all experimen-
tal protocols was provided by the ethics committees of Austin Health, St Vincent’s Health, Hollywood Private 
Hospital and Edith Cowan University. All experiments and methods were carried out in accordance with the 
approved guidelines and regulations and all volunteers gave written informed consent before participating in the 
study.

SNP selection, genotyping and quality control.  A thorough literature review was conducted in 
PubMed to identify genes with an a priori evidence of association with AD risk, cognitive performance, patholog-
ical characteristics (i.e. Aβ/tau, atrophy), candidate peripheral/CSF biomarkers, hypothesised pathomechanisms 
(e.g. Aβ clearance/metabolism) and other AD related biological pathways or comorbidities (e.g. endocytosis, 
cholesterol metabolism, steroidogenesis, diabetes/insulin resistance, cardiovascular disease). This resulted in the 
selection of an a priori candidate list of 270 genes. The final selection of 2088 genetic markers across these loci 
was based on prior phenotypic association and/or extended coverage of each loci. The list of genetic variants is 
available in Supplementary Table 2.

Genotype data was obtained from 1416 samples from the AIBL cohort using using a combination of an 
Illumina GoldenGate array containing 1536 markers and multiple TaqMan® OpenArray™ assays.

The GoldenGate array was performed by the Beijing Genomics Institute (BGI, Shenzhen, China) as per man-
ufacturer’s protocols. OpenArray™ assays were developed using inventoried or custom designed TaqMan® gen-
otyping assays, whilst TaqMan® assays were used for APOE genotyping (rs7412, assay ID: C____904973_10; 
rs429358, assay ID: C___3084793_20; Life Technologies, Carlsbad, CA) using the TaqMan® GTXpress® 
Master Mix (Life Technologies). All TaqMan® and OpenArray™ assays were performed on an Applied 
Biosystems™ QuantStudio™ 12 K Flex Real-Time PCR system using the manufacturer’s instructions.

Genotype data was prepared by removing markers with a genotyping call rate below 95% and a minor allele 
frequency (MAF) of at least 0.05. In addition, markers not in Hardy-Weinberg equilibrium (p < 10−4) were 
removed. Samples identified with discordant sex information and samples with a call rate below 95% were dis-
carded. Approximately 65% of samples (N = 918) and over 77% of genetic markers assayed (N = 1610) reached 
QC procedures.

This study limited its analyses to a subset of 505 participants who had previously undergone positron emis-
sion tomography (PET) to assess neocortical Aβ burden. PET imaging was performed with three different 
Aβ-imaging radiotracers 11C-Pittsburgh Compound B (PiB), 18F-florbetapir (FLUTE) or 18F-flutemetamol 
(FBP). Methodology for each tracer has been previously described in54. Briefly, standardised uptake values 
(SUVs) were calculated via summing spatially normalised PET images sampled using a narrow cortical regions of 
interest template using CapAIBL®, a web-based, freely available software55,56. The SUVs were then scaled to each 
tracer’s recommended reference regions to define the SUV ratio (SUVR). Reference region for PiB was the cere-
bellar cortex57,58, for FLUTE the pons59 and for FBP the whole cerebellum60. All participants were then classified 
to a dichotomous Aβ deposition phenotype, being either high (Aβ+; n = 258) or low (Aβ−; n = 247), based on 
each tracer-specific neuropathology established thresholds (PiB: 1.4 SUVR, FLUTE: 0.62 SUVR and FBP: 1.05 
SUVR)58–60. Despite displaying different dynamic ranges and subtle differences in the uptake and selectivity of the 
probes61,62, head to head comparisons of the three radiotracers have previously shown >98% concordance in their 
classification as PET Aβ+ and PET Aβ−63–65.

Association analyses.  To identify associations between genetic marker and the dichotomous Aβ status, we 
performed a logistic regression using PLINK266. The analyses incorporated age, gender and the presence/absence 
of the ε4 allele as covariates. Considering the limited sample size of the data set and the targeted nature of the 
study, we used the following approach to identify an adequate threshold for significance. To estimate an empirical 
threshold for significance, we measured the distributions of the P-values of the variants and defined a threshold, 
Psig, as the 99th percentile (1-α) at a significance level of α = 0.01. We calculated Psig using the Harrell–Davis 
distribution-free quantile estimator67.
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Data availability
All data and samples used in this study are derived from the Australian Imaging, Biomarkers and Lifestyle (AIBL) 
Study68. All AIBL data, and that specific to this study, is publicly accessible to all interested parties through an 
Expression of Interest procedure and is governed by the AIBL Data Use Agreement, for more information please 
see https://aibl.csiro.au/awd/.
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