45 research outputs found

    The systemic environment: at the interface of aging and adult neurogenesis.

    Get PDF
    Aging results in impaired neurogenesis in the two neurogenic niches of the adult mammalian brain, the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle. While significant work has characterized intrinsic cellular changes that contribute to this decline, it is increasingly apparent that the systemic environment also represents a critical driver of brain aging. Indeed, emerging studies utilizing the model of heterochronic parabiosis have revealed that immune-related molecular and cellular changes in the aging systemic environment negatively regulate adult neurogenesis. Interestingly, these studies have also demonstrated that age-related decline in neurogenesis can be ameliorated by exposure to the young systemic environment. While this burgeoning field of research is increasingly garnering interest, as yet, the precise mechanisms driving either the pro-aging effects of aged blood or the rejuvenating effects of young blood remain to be thoroughly defined. Here, we review how age-related changes in blood, blood-borne factors, and peripheral immune cells contribute to the age-related decline in adult neurogenesis in the mammalian brain, and posit both direct neural stem cell and indirect neurogenic niche-mediated mechanisms

    Tet2 Rescues Age-Related Regenerative Decline and Enhances Cognitive Function in the Adult Mouse Brain.

    Get PDF
    Restoring adult stem cell function provides an exciting approach for rejuvenating the aging brain. However, molecular mechanisms mediating neurogenic rejuvenation remain elusive. Here we report that the enzyme ten eleven translocation methylcytosine dioxygenase 2 (Tet2), which catalyzes the production of 5-hydroxymethylcytosine (5hmC), rescues age-related decline in adult neurogenesis and enhances cognition in mice. We detected a decrease in Tet2 expression and 5hmC levels in the aged hippocampus associated with adult neurogenesis. Mimicking an aged condition in young adults by abrogating Tet2 expression within the hippocampal neurogenic niche, or adult neural stem cells, decreased neurogenesis and impaired learning and memory. In a heterochronic parabiosis rejuvenation model, hippocampal Tet2 expression was restored. Overexpressing Tet2 in the hippocampal neurogenic niche of mature adults increased 5hmC associated with neurogenic processes, offset the precipitous age-related decline in neurogenesis, and enhanced learning and memory. Our data identify Tet2 as a key molecular mediator of neurogenic rejuvenation

    Complement receptor 2 is expressed in neural progenitor cells and regulates adult hippocampal neurogenesis

    Get PDF
    Injury and inflammation are potent regulators of adult neurogenesis. As the complement system forms a key immune pathway that may also exert critical functions in neural development and neurodegeneration, we asked if complement receptors regulate neurogenesis. We discovered that complement receptor 2 (CR2), classically known as a co-receptor of the B lymphocyte antigen receptor, is expressed in adult neural progenitor cells (NPCs) of the dentate gyrus. Two of its ligands, C3d and interferon-α (IFN-α), inhibited proliferation of wildtype NPCs but not NPCs derived from mice lacking Cr2 (Cr2(−/−)) indicating functional Cr2 expression. Young and old Cr2(−/−) mice exhibited prominent increases in basal neurogenesis compared with wildtype littermates, while intracerebral injection of C3d resulted in fewer proliferating neuroblasts in wildtype than in Cr2(−/−) mice. We conclude that Cr2 regulates hippocampal neurogenesis and propose that increased C3d and IFN-α production associated with brain injury or viral infections may inhibit neurogenesis

    Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival

    Get PDF
    Colony-stimulating factor 1 (CSF1) and interleukin-34 (IL-34) are functional ligands of the CSF1 receptor (CSF1R) and thus are key regulators of the monocyte/macrophage lineage. We discovered that systemic administration of human recombinant CSF1 ameliorates memory deficits in a transgenic mouse model of Alzheimer’s disease. CSF1 and IL-34 strongly reduced excitotoxin-induced neuronal cell loss and gliosis in wild-type mice when administered systemically before or up to 6 h after injury. These effects were accompanied by maintenance of cAMP responsive element–binding protein (CREB) signaling in neurons rather than in microglia. Using lineage-tracing experiments, we discovered that a small number of neurons in the hippocampus and cortex express CSF1R under physiological conditions and that kainic acid–induced excitotoxic injury results in a profound increase in neuronal receptor expression. Selective deletion of CSF1R in forebrain neurons in mice exacerbated excitotoxin-induced death and neurodegeneration. We conclude that CSF1 and IL-34 provide powerful neuroprotective and survival signals in brain injury and neurodegeneration involving CSF1R expression on neurons

    Microglia—A Wrench in the Running Wheel?

    Get PDF
    Increasing the amount of physical activity has been observed to ameliorate the progression of Alzheimer's disease (AD), as well as enhance neurogenesis. Choi et al. in this issue of Neuron report that the expression of Presenilin 1 (PS1) variants, responsible for the early onset of familial AD, are capable of mitigating the regenerative effects associated with increased activity and environmental enrichment likely through changes in resident microglia and their secreted factors

    Platelets Give a Running Start to Adult Hippocampal Neurogenesis

    Get PDF
    Exercise boosts neural stem and progenitor cell proliferation and differentiation in the dentate gyrus region of the hippocampus. In this issue of Stem Cell Reports, Leiter et al. (2019) identify acute exercise-induced platelet activation and platelet factor-4 as novel systemic mediators of adult hippocampal neurogenesis. : Exercise boosts neural stem and progenitor cell proliferation and differentiation in the dentate gyrus region of the hippocampus. In this issue of Stem Cell Reports, Leiter et al. (2019) identify acute exercise-induced platelet activation and platelet factor-4 as novel systemic mediators of adult hippocampal neurogenesis
    corecore