10 research outputs found

    Tess data for asteroseismology: Timing verification

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) is NASA´s latest space telescope dedicated to the discovery of transiting exoplanets around nearby stars. Besides the main goal of the mission, asteroseismology is an important secondary goal and very relevant for the high-quality time series that TESS will make during its two-year all-sky survey. Using TESS for asteroseismology introduces strong timing requirements, especially for coherent oscillators. Although the internal clock on board TESS is precise in its own time, it might have a constant drift. Thus, it will need calibration, or else offsets might inadvertently be introduced. Here, we present simultaneous ground- and space-based observations of primary eclipses of several binary systems in the Southern ecliptic hemisphere, used to verify the reliability of the TESS timestamps. From 12 contemporaneous TESS/ground observations, we determined a time offset equal to 5.8 ± 2.5 s, in the sense that the barycentric time measured by TESS is ahead of real time. The offset is consistent with zero at the 2.3σ level. In addition, we used 405 individually measured mid-eclipse times of 26 eclipsing binary stars observed solely by TESS in order to test the existence of a potential drift with a monotonic growth (or decay) affecting the observations of all stars. We find a drift corresponding to σ drift = 0.009 ± 0.015 s day-1. We find that the measured offset is of a size that will not become an issue for comparing ground-based and space data for coherent oscillations for most of the targets observed with TESS.Fil: Essen, Carolina von. University Aarhus; DinamarcaFil: Lund, Mikkel N.. University Aarhus; DinamarcaFil: Handberg, Rasmus. University Aarhus; DinamarcaFil: Sosa, Marina Soledad. University Aarhus; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Gadeberg, Julie Thiim. University Aarhus; DinamarcaFil: Kjeldsen, Hans. University Aarhus; DinamarcaFil: Vanderspek, Roland K.. Massachusetts Institute of Technology; Estados UnidosFil: Mortensen, Dina S.. University Aarhus; DinamarcaFil: Mallonn, M.. Leibniz Institute for Astrophysics Potsdam; AlemaniaFil: Mammana, Luis Antonio. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; ArgentinaFil: Morgan, Edward H.. Massachusetts Institute of Technology; Estados UnidosFil: Villaseñor, Jesus Noel S.. Massachusetts Institute of Technology; Estados UnidosFil: Fausnaugh, Michael M.. Massachusetts Institute of Technology; Estados UnidosFil: Ricker, George R.. Massachusetts Institute of Technology; Estados Unido

    TESS Discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844

    Full text link
    Data from the newly-commissioned \textit{Transiting Exoplanet Survey Satellite} (TESS) has revealed a "hot Earth" around LHS 3844, an M dwarf located 15 pc away. The planet has a radius of 1.32±0.021.32\pm 0.02 RR_\oplus and orbits the star every 11 hours. Although the existence of an atmosphere around such a strongly irradiated planet is questionable, the star is bright enough (I=11.9I=11.9, K=9.1K=9.1) for this possibility to be investigated with transit and occultation spectroscopy. The star's brightness and the planet's short period will also facilitate the measurement of the planet's mass through Doppler spectroscopy.Comment: 10 pages, 4 figures. Submitted to ApJ Letters. This letter makes use of the TESS Alert data, which is currently in a beta test phase, using data from the pipelines at the TESS Science Office and at the TESS Science Processing Operations Cente

    Validation of TOI-1221 b: A warm sub-Neptune exhibiting TTVs around a Sun-like star

    Full text link
    We present a validation of the long-period (91.682780.00041+0.0003291.68278^{+0.00032}_{-0.00041} days) transiting sub-Neptune planet TOI-1221 b (TIC 349095149.01) around a Sun-like (mV_{\rm V}=10.5) star. This is one of the few known exoplanets with period >50 days, and belongs to the even smaller subset of which have bright enough hosts for detailed spectroscopic follow-up. We combine TESS light curves and ground-based time-series photometry from PEST (0.3~m) and LCOGT (1.0~m) to analyze the transit signals and rule out nearby stars as potential false positive sources. High-contrast imaging from SOAR and Gemini/Zorro rule out nearby stellar contaminants. Reconnaissance spectroscopy from CHIRON sets a planetary scale upper mass limit on the transiting object (1.1 and 3.5 MJup_{\rm Jup} at 1σ\sigma and 3σ\sigma, respectively) and shows no sign of a spectroscopic binary companion. We determine a planetary radius of Rp=2.910.12+0.13RR_{\rm p} = 2.91^{+0.13}_{-0.12} R_{\oplus}, placing it in the sub-Neptune regime. With a stellar insolation of S=6.060.77+0.85 SS = 6.06^{+0.85}_{-0.77}\ S_{\oplus}, we calculate a moderate equilibrium temperature of Teq=T_{\rm eq} = 440 K, assuming no albedo and perfect heat redistribution. We find a false positive probability from TRICERATOPS of FPP =0.0014±0.0003 = 0.0014 \pm 0.0003 as well as other qualitative and quantitative evidence to support the statistical validation of TOI-1221 b. We find significant evidence (>5σ5\sigma) of oscillatory transit timing variations, likely indicative of an additional non-transiting planet.Comment: 17 pages, 9 figures, 4 table

    The First Habitable Zone Earth-Sized Planet From TESS II: Spitzer Confirms TOI-700 d

    Get PDF
    We present Spitzer 4.5 μm observations of the transit of TOI-700 d, a habitable-zone Earth-sized planet in a multiplanet system transiting a nearby M-dwarf star (TIC 150428135, 2MASS J06282325–6534456). TOI-700 d has a radius of 1.144^(+0.062)_(-0.061) R⊕ and orbits within its host star's conservative habitable zone with a period of 37.42 days (T_(eq) ~ 269 K). TOI-700 also hosts two small inner planets (R_b = 1.037^(+0.0065)_(-0.064) R⊕ and R_c = 2.65^(+0.16)_(-0.15) R⊕) with periods of 9.98 and 16.05 days, respectively. Our Spitzer observations confirm the Transiting Exoplanet Survey Satellite (TESS) detection of TOI-700 d and remove any remaining doubt that it is a genuine planet. We analyze the Spitzer light curve combined with the 11 sectors of TESS observations and a transit of TOI-700 c from the LCOGT network to determine the full system parameters. Although studying the atmosphere of TOI-700 d is not likely feasible with upcoming facilities, it may be possible to measure the mass of TOI-700 d using state-of-the-art radial velocity (RV) instruments (expected RV semiamplitude of ~70 cm s⁻¹)

    An Eccentric Massive Jupiter Orbiting a Subgiant on a 9.5-day Period Discovered in the <i>Transiting Exoplanet Survey Satellite</i> Full Frame Images

    Get PDF
    We report the discovery of TOI-172 b from the Transiting Exoplanet Survey Satellite (TESS) mission, a massive hot Jupiter transiting a slightly evolved G star with a 9.48-day orbital period. This is the first planet to be confirmed from analysis of only the TESS full frame images, because the host star was not chosen as a two-minute cadence target. From a global analysis of the TESS photometry and follow-up observations carried out by the TESS Follow-up Observing Program Working Group, TOI-172 (TIC 29857954) is a slightly evolved star with an effective temperature of T eff = 5645 ± 50 K, a mass of M ⋆ = {1.128}-0.061+0.065 M ⊙, radius of R ⋆ = {1.777}-0.044+0.047 R ⊙, a surface gravity of log g ⋆ = {3.993}-0.028+0.027, and an age of {7.4}-1.5+1.6 {Gyr}. Its planetary companion (TOI-172 b) has a radius of R P = {0.965}-0.029+0.032 R J, a mass of M P = {5.42}-0.20+0.22 M J, and is on an eccentric orbit (e={0.3806}-0.0090+0.0093). TOI-172 b is one of the few known massive giant planets on a highly eccentric short-period orbit. Future study of the atmosphere of this planet and its system architecture offer opportunities to understand the formation and evolution of similar systems

    An ultrahot Neptune in the Neptune desert

    Get PDF
    About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet. All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R⊕), or apparently rocky planets smaller than 2 R⊕. Such lack of planets of intermediate size (the ‘hot Neptune desert’) has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R⊕ and a mass of 29 M⊕, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet’s mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0^(+2.7)_(−2.9)% of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this ‘ultrahot Neptune’ managed to retain such an envelope. Follow-up observations of the planet’s atmosphere to better understand its origin and physical nature will be facilitated by the star’s brightness (V_(mag) = 9.8)

    The VLT-FLAMES Tarantula Survey

    No full text
    The VLT-FLAMES Tarantula Survey (VFTS) was an ESO Large Programme that has provided a rich, legacy dataset for studies of both resolved and integrated populations of massive stars. Initiated in 2008 (ESO Period 82), we used the Fibre Large Array Multi Element Spectrograph (FLAMES) to observe more than 800 massive stars in the dramatic 30 Doradus star-forming region in the Large Magellanic Cloud. At the start of the survey the importance of multiplicity among high-mass stars was becoming evident, so a key feature was multi-epoch spectroscopy to detect radial-velocity shifts arising from binary motion. Here we summarise some of the highlights from the survey and look ahead to the future of the field.With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737

    TOI-2076 and TOI-1807: Two young, comoving planetary systems within 50 pc identified by TESS that are ideal candidates for further follow up

    No full text
    We report the discovery of two planetary systems around comoving stars: TOI-2076 (TIC 27491137) and TOI-1807 (TIC 180695581). TOI-2076 is a nearby (41.9 pc) multiplanetary system orbiting a young (204 ± 50 Myr), bright (K = 7.115 in TIC v8.1) start. TOI-1807 hosts a single transiting planet and is similarly nearby (42.58 pc), similarly young (180 ± 40 Myr ), and bright. Both targets exhibit significant, periodic variability due to starspots, characteristic of their young ages. Using photometric data collected by TESS we identify three transiting planets around TOI-2076 with radii of R b = 3.3 ± 0.04 R ⊕, R c = 4.4 ± 0.05 R ⊕, and R d = 4.1 ± 0.07 R ⊕. Planet TOI-2076b has a period of P b = 10.356 days. For both TOI-2076c and d, TESS observed only two transits, separated by a 2 yr interval in which no data were collected, preventing a unique period determination. A range of long periods (<17 days) are consistent with the data. We identify a short-period planet around TOI-1807 with a radius of R b = 1.8 ± 0.04 R ⊕ and a period of P b = 0.549 days. Their close proximity, and bright, cool host stars, and young ages make these planets excellent candidates for follow up. TOI-1807b is one of the best-known small (R < 2 R⊕) planets for characterization via eclipse spectroscopy and phase curves with JWST. TOI-1807b is the youngest ultra-short-period planet discovered to date, providing valuable constraints on formation timescales of short-period planets. Given the rarity of young planets, particularly in multiple-planet systems, these planets present an unprecedented opportunity to study and compare exoplanet formation, and young planet atmospheres, at a crucial transition age for formation theory

    The First Habitable-zone Earth-sized Planet from TESS. II. Spitzer Confirms TOI-700 d

    No full text
    corecore