6 research outputs found

    Transistors multimodaux sensibles aux ions Ă  polymĂšres ambivalents pour biocapteurs hybrides

    No full text
    The generation of novel materials to harness the power of biological sensors is extremely attractive because precisely configured electrical activities form the base of key biological events such as brain activity, heart beat or vital hormone secretion. Cellular signals are often recorded using probes that require genetic or chemical manipulation. Intrinsic signals offer the huge advantage to harness these properties without further transformations. Extracellular microelectrode arrays (MEAs) and polymer-based organic electrochemical transistor arrays (OECTs) rely on the movement of ions, are non-invasive and provide some information on cell activity. However, they cannot resolve fluxes of specific species as targeted ions to obtain a precise picture of cell/organ activity. In this context, this work has consisted on the development of multimodal ion-sensing polymers, demonstration of their biocompatibility to beta-cells, the engineer of original OECTs incorporating these materials and demonstration of their viability as non-invasive platform of electrical cell activity and specific ion fluxes.Le dĂ©veloppement de nouveaux matĂ©riaux pour augmenter les performances des capteurs biologiques est trĂšs important lorsqu'on sait que les signaux Ă©lectriques constituent la base des Ă©vĂšnements biologiques fondamentaux comme l’activitĂ© cĂ©rĂ©brale, le battement du coeur ou la sĂ©crĂ©tion hormonale. Ces signaux cellulaires sont souvent enregistrĂ©s avec des sondes qui nĂ©cessitent des modifications gĂ©nĂ©tiques ou chimiques. Cependant, des signaux intrinsĂšques pourraient ĂȘtre exploitĂ©s directement. Des matrices de microĂ©lectrodes extracellulaires (MEAs) et des transistors Ă©lectrochimiques Ă  base de polymĂšres (OECTs) sont par exemple sensibles aux flux ioniques. Ils sont, de plus, non-invasifs et donnent des informations importantes sur l’activitĂ© cellulaire. Cependant, ils ne peuvent diffĂ©rencier les espĂšces ioniques impliquĂ©es dans les signaux pour l’obtention d’une image prĂ©cise de l’activitĂ© Ă©lectrique. Ce travail de thĂšse a ainsi consistĂ© dans : le dĂ©veloppement de polymĂšres bivalents ion-sensibles et conducteurs Ă©lectroniques, la dĂ©monstration de leur biocompatibilitĂ© avec des cellules bĂȘta-pancrĂ©atiques, la fabrication de transistors OECTs intĂ©grant ces matĂ©riaux et la preuve de concept de son applicabilitĂ© comme plateforme non-invasive pour la dĂ©tection de flux ioniques

    Multimodal sensing polymer transistors for cell and micro-organ monitoring

    No full text
    Le dĂ©veloppement de nouveaux matĂ©riaux pour augmenter les performances des capteurs biologiques est trĂšs important lorsqu'on sait que les signaux Ă©lectriques constituent la base des Ă©vĂšnements biologiques fondamentaux comme l’activitĂ© cĂ©rĂ©brale, le battement du coeur ou la sĂ©crĂ©tion hormonale. Ces signaux cellulaires sont souvent enregistrĂ©s avec des sondes qui nĂ©cessitent des modifications gĂ©nĂ©tiques ou chimiques. Cependant, des signaux intrinsĂšques pourraient ĂȘtre exploitĂ©s directement. Des matrices de microĂ©lectrodes extracellulaires (MEAs) et des transistors Ă©lectrochimiques Ă  base de polymĂšres (OECTs) sont par exemple sensibles aux flux ioniques. Ils sont, de plus, non-invasifs et donnent des informations importantes sur l’activitĂ© cellulaire. Cependant, ils ne peuvent diffĂ©rencier les espĂšces ioniques impliquĂ©es dans les signaux pour l’obtention d’une image prĂ©cise de l’activitĂ© Ă©lectrique. Ce travail de thĂšse a ainsi consistĂ© dans : le dĂ©veloppement de polymĂšres bivalents ion-sensibles et conducteurs Ă©lectroniques, la dĂ©monstration de leur biocompatibilitĂ© avec des cellules bĂȘta-pancrĂ©atiques, la fabrication de transistors OECTs intĂ©grant ces matĂ©riaux et la preuve de concept de son applicabilitĂ© comme plateforme non-invasive pour la dĂ©tection de flux ioniques.The generation of novel materials to harness the power of biological sensors is extremely attractive because precisely configured electrical activities form the base of key biological events such as brain activity, heart beat or vital hormone secretion. Cellular signals are often recorded using probes that require genetic or chemical manipulation. Intrinsic signals offer the huge advantage to harness these properties without further transformations. Extracellular microelectrode arrays (MEAs) and polymer-based organic electrochemical transistor arrays (OECTs) rely on the movement of ions, are non-invasive and provide some information on cell activity. However, they cannot resolve fluxes of specific species as targeted ions to obtain a precise picture of cell/organ activity. In this context, this work has consisted on the development of multimodal ion-sensing polymers, demonstration of their biocompatibility to beta-cells, the engineer of original OECTs incorporating these materials and demonstration of their viability as non-invasive platform of electrical cell activity and specific ion fluxes

    Simultaneous monitoring of single cell and of micro-organ activity by PEDOT:PSS covered multi-electrode arrays

    No full text
    © 2017 Continuous and long-term monitoring of cellular and micro-organ activity is required for new insights into physiology and novel technologies such as Organs-on-Chip. Moreover, recent advances in stem cell technology and especially in the field of diabetes call for non-invasive approaches in quality testing of the large quantities of surrogate pancreatic islets to be generated. Electrical activity of such a micro-organ results in single cell action potentials (APs) of high frequency and in low frequency changes in local field potentials (slow potentials or SPs), reflecting coupled cell activity and overall organ physiology. Each of them is indicative of different physiological stages in islet activation. Action potentials in islets are of small amplitude and very difficult to detect. The use of PEDOT:PSS to coat metal electrodes i s expected to reduce noise and results in a frequency-dependent change in impedance, as shown here. Whereas detection of high-frequency APs improves, low frequency SPs are less well detected which is, however, an acceptable trade off in view of the strong amplitude of SPs. Using a dedicated software, recorded APs and SPs can be automatically diagnosed and analyzed. Concomitant capture of the two signals will considerably increase the diagnostic power of monitoring islets and islet surrogates in fundamental research as well as drug screening or the use of islets as biosensors
    corecore