137 research outputs found

    IL-27 Imparts Immunoregulatory Function to Human NK Cell Subsets

    Get PDF
    Interleukin-27 (IL-27) is a cytokine with multiple roles in regulating the immune response, but its effect on human CD56bright and CD56dim NK cell subsets is unknown. NK cell subsets interact with other components of the immune system, leading to cytotoxicity or immunoregulation depending on stimulating factors. We found that IL-27 treatment results in increased IL-10 and IFN-γ expression, increased viability and decreased proliferation in both CD56bright and CD56dim NK cell subsets. More importantly, IL-27 treatment imparts regulatory activity to CD56bright NK cells, which mediates its suppressive function on T cells in a contact-dependent manner. There is growing evidence that CD56bright NK cell-mediated immunoregulation plays an important role in the control of autoimmunity. Thus, understanding the role of IL-27 in NK cell function has important implications for treatment of autoimmune disorders

    The Myeloid Receptor PILRβ Mediates the Balance of Inflammatory Responses through Regulation of IL-27 Production

    Get PDF
    Paired immunoglobulin-like receptors beta, PILRβ, and alpha, PILRα, are related to the Siglec family of receptors and are expressed primarily on cells of the myeloid lineage. PILRβ is a DAP12 binding partner expressed on both human and mouse myeloid cells. The potential ligand, CD99, is found on many cell types, such as epithelial cells where it plays a role in migration of immune cells to sites of inflammation. Pilrb deficient mice were challenged with the parasite Toxoplasma gondii in two different models of infection induced inflammation; one involving the establishment of chronic encephalitis and a second mimicking inflammatory bowel disease in order to understand the potential role of this receptor in persistent inflammatory responses. It was found that in the absence of activating signals from PILRβ, antigen-presenting cells (APCs) produced increased amounts of IL-27, p28 and promoted IL-10 production in effector T cells. The sustained production of IL-27 led ultimately to enhanced survival after challenge due to dampened immune pathology in the gut. Similar protection was also observed in the CNS during chronic T. gondii infection after i.p. challenge again providing evidence that PILRβ is important for regulating aberrant inflammatory responses

    The Duration of Antigen-Stimulation Significantly Alters the Diversity of Multifunctional CD4 T Cells Measured by Intracellular Cytokine Staining

    Get PDF
    The assessment of antigen-specific T cell responses by intracellular cytokine staining (ICS) has become a routine technique in studies of vaccination and immunity. Here, we highlight how the duration of in vitro antigen pre-stimulation, combined with the cytokine accumulation period, are critical parameters of these methods. The effect of varying these parameters upon the diversity and frequency of multifunctional CD4 T cell subsets has been investigated using a murine model of TB vaccination and in cattle naturally infected with Mycobacterium bovis. We demonstrate a substantial influence of the duration of the antigen pre-stimulation period on the repertoire of the antigen-specific CD4 T cell responses. Increasing pre-stimulation from 2 to 6 hours amplified the diversity of the seven potential multifunctional CD4 T cell subsets that secreted any combination of IFN-γ, IL-2 and TNF-α. However, increasing pre-stimulation from 6 to 16 hours markedly altered the multifunctional CD4 T cell repertoire to a dominant IFN-γ+ only response. This was observed in both murine and cattle models

    Novel Role of Phosphorylation-Dependent Interaction between FtsZ and FipA in Mycobacterial Cell Division

    Get PDF
    The bacterial divisome is a multiprotein complex. Specific protein-protein interactions specify whether cell division occurs optimally, or whether division is arrested. Little is known about these protein-protein interactions and their regulation in mycobacteria. We have investigated the interrelationship between the products of the Mycobacterium tuberculosis gene cluster Rv0014c-Rv0019c, namely PknA (encoded by Rv0014c) and FtsZ-interacting protein A, FipA (encoded by Rv0019c) and the products of the division cell wall (dcw) cluster, namely FtsZ and FtsQ. M. smegmatis strains depleted in components of the two gene clusters have been complemented with orthologs of the respective genes of M. tuberculosis. Here we identify FipA as an interacting partner of FtsZ and FtsQ and establish that PknA-dependent phosphorylation of FipA on T77 and FtsZ on T343 is required for cell division under oxidative stress. A fipA knockout strain of M. smegmatis is less capable of withstanding oxidative stress than the wild type and showed elongation of cells due to a defect in septum formation. Localization of FtsQ, FtsZ and FipA at mid-cell was also compromised. Growth and survival defects under oxidative stress could be functionally complemented by fipA of M. tuberculosis but not its T77A mutant. Merodiploid strains of M. smegmatis expressing the FtsZ(T343A) showed inhibition of FtsZ-FipA interaction and Z ring formation under oxidative stress. Knockdown of FipA led to elongation of M. tuberculosis cells grown in macrophages and reduced intramacrophage growth. These data reveal a novel role of phosphorylation-dependent protein-protein interactions involving FipA, in the sustenance of mycobacterial cell division under oxidative stress

    Helminth-induced Th2 cell dysfunction is distinct from exhaustion and is maintained in the absence of antigen

    Get PDF
    T cell-intrinsic regulation, such as anergy, adaptive tolerance and exhaustion, is central to immune regulation. In contrast to Type 1 and Type 17 settings, knowledge of the intrinsic fate and function of Th2 cells in chronic Type 2 immune responses is lacking. We previously showed that Th2 cells develop a PD-1/PD-L2-dependent intrinsically hypo-responsive phenotype during infection with the filarial nematode Litomosoides sigmodontis, denoted by impaired functionality and parasite killing. This study aimed to elucidate the transcriptional changes underlying Th2 cell-intrinsic hypo-responsiveness, and whether it represents a unique and stable state of Th2 cell differentiation. We demonstrated that intrinsically hypo-responsive Th2 cells isolated from L. sigmodontis infected mice stably retained their dysfunctional Th2 phenotype upon transfer to naïve recipients, and had a divergent transcriptional profile to classical Th2 cells isolated prior to hypo-responsiveness and from mice exposed to acute Type 2 stimuli. Hypo-responsive Th2 cells displayed a distinct transcriptional profile to exhausted CD4+ T cells, but upregulated Blimp-1 and the anergy/regulatory-associated transcription factors Egr2 and c-Maf, and shared characteristics with tolerised T cells. Hypo-responsive Th2 cells increased mRNA expression of the soluble regulatory factors Fgl2, Cd38, Spp1, Areg, Metrnl, Lgals3, and Csf1, and a subset developed a T-bet+IFN-γ+ Th2/Th1 hybrid phenotype, indicating that they were not functionally inert. Contrasting with their lost ability to produce Th2 cytokines, hypo-responsive Th2 cells gained IL-21 production and IL-21R blockade enhanced resistance to L. sigmodontis. IL-21R blockade also increased the proportion of CD19+PNA+ germinal centre B cells and serum levels of parasite specific IgG1. This indicates a novel regulatory role for IL-21 during filarial infection, both in controlling protection and B cell responses. Thus, Th2 cell-intrinsic hypo-responsiveness is a distinct and stable state of Th2 cell differentiation associated with a switch from a classically active IL-4+IL-5+ Th2 phenotype, to a non-classical dysfunctional and potentially regulatory IL-21+Egr2+c-Maf+Blimp-1+IL-4loIL-5loT-bet+IFN-γ+ Th2 phenotype. This divergence towards alternate Th2 phenotypes during chronicity has broad implications for the outcomes and treatment of chronic Type 2-related infections and diseases

    Th2 Cell-Intrinsic Hypo-Responsiveness Determines Susceptibility to Helminth Infection

    Get PDF
    The suppression of protective Type 2 immunity is a principal factor driving the chronicity of helminth infections, and has been attributed to a range of Th2 cell-extrinsic immune-regulators. However, the intrinsic fate of parasite-specific Th2 cells within a chronic immune down-regulatory environment, and the resultant impact such fate changes may have on host resistance is unknown. We used IL-4gfp reporter mice to demonstrate that during chronic helminth infection with the filarial nematode Litomosoides sigmodontis, CD4(+) Th2 cells are conditioned towards an intrinsically hypo-responsive phenotype, characterised by a loss of functional ability to proliferate and produce the cytokines IL-4, IL-5 and IL-2. Th2 cell hypo-responsiveness was a key element determining susceptibility to L. sigmodontis infection, and could be reversed in vivo by blockade of PD-1 resulting in long-term recovery of Th2 cell functional quality and enhanced resistance. Contrasting with T cell dysfunction in Type 1 settings, the control of Th2 cell hypo-responsiveness by PD-1 was mediated through PD-L2, and not PD-L1. Thus, intrinsic changes in Th2 cell quality leading to a functionally hypo-responsive phenotype play a key role in determining susceptibility to filarial infection, and the therapeutic manipulation of Th2 cell-intrinsic quality provides a potential avenue for promoting resistance to helminths

    Baseline Levels of Influenza-Specific CD4 Memory T-Cells Affect T-Cell Responses to Influenza Vaccines

    Get PDF
    BACKGROUND: Factors affecting immune responses to influenza vaccines have not been studied systematically. We hypothesized that T-cell and antibody responses to the vaccines are functions of pre-existing host immunity against influenza antigens. METHODOLOGY/PRINCIPAL FINDINGS: During the 2004 and 2005 influenza seasons, we have collected data on cellular and humoral immune reactivity to influenza virus in blood samples collected before and after immunization with inactivated or live attenuated influenza vaccines in healthy children and adults. We first used cross-validated lasso regression on the 2004 dataset to identify a group of candidate baseline correlates with T-cell and antibody responses to vaccines, defined as fold-increase in influenza-specific T-cells and serum HAI titer after vaccination. The following baseline parameters were examined: percentages of influenza-reactive IFN-gamma(+) cells in T and NK cell subsets, percentages of influenza-specific memory B-cells, HAI titer, age, and type of vaccine. The candidate baseline correlates were then tested with the independent 2005 dataset. Baseline percentage of influenza-specific IFN-gamma(+) CD4 T-cells was identified as a significant correlate of CD4 and CD8 T-cell responses, with lower baseline levels associated with larger T-cell responses. Baseline HAI titer and vaccine type were identified as significant correlates for HAI response, with lower baseline levels and the inactivated vaccine associated with larger HAI responses. Previously we reported that baseline levels of CD56(dim) NK reactivity against influenza virus inversely correlated with the immediate T-cell response to vaccination, and that NK reactivity induced by influenza virus depended on IL-2 produced by influenza-specific memory T-cells. Taken together these results suggest a novel mechanism for the homeostasis of virus-specific T-cells, which involves interaction between memory helper T-cells, CD56(dim) NK and DC. SIGNIFICANCE: These results demonstrate that assessment of baseline biomarkers may predict immunologic outcome of influenza vaccination and may reveal some of the mechanisms responsible for variable immune responses following vaccination and natural infection

    Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer

    Get PDF
    The IL-6 family of cytokines consists of IL-6, IL-11, IL-27, IL-31, oncostatin M (OSM), leukaemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), cardiotrophin 1 (CT-1) and cardiotrophin-like cytokine factor 1 (CLCF1). Membership of this cytokine family is defined by usage of common β-receptor signalling subunits, which activate various intracellular signalling pathways. Each IL-6 family member elicits responses essential to the physiological control of immune homeostasis, haematopoiesis, inflammation, development and metabolism. Accordingly, distortion of these cytokine activities often promotes chronic disease and cancer; the pathological importance of this is exemplified by the successful treatment of certain autoimmune conditions with drugs that target the IL-6 pathway. Here, we discuss the emerging roles for IL-6 family members in infection, chronic inflammation, autoimmunity and cancer and review therapeutic strategies designed to manipulate these cytokines in disease

    QTL mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica L. Batsch) F1 progeny

    Get PDF
    Brown rot (BR) caused by Monilinia spp. leads to significant post-harvest losses in stone fruit production, especially peach. Previous genetic analyses in peach progenies suggested that BR resistance segregates as a quantitative trait. In order to uncover genomic regions associated with this trait and identify molecular markers for assisted selection (MAS) in peach, an F1 progeny from the cross "Contender" (C, resistant) 7 "Elegant Lady" (EL, susceptible) was chosen for quantitative trait loci (QTL) analysis. Over two phenotyping seasons, skin (SK) and flesh (FL) artificial infections were performed on fruits using a Monilinia fructigena isolate. For each treatment, infection frequency (if) and average rot diameter (rd) were scored. Significant seasonal and intertrait correlations were found. Maturity date (MD) was significantly correlated with disease impact. Sixty-three simple sequence repeats (SSRs) plus 26 single-nucleotide polymorphism (SNP) markers were used to genotype the C 7 EL population and to construct a linkage map. C 7 EL map included the eight Prunus linkage groups (LG), spanning 572.92 cM, with an average interval distance of 6.9 cM, covering 78.73 % of the peach genome (V1.0). Multiple QTL mapping analysis including MD trait as covariate uncovered three genomic regions associated with BR resistance in the two phenotyping seasons: one containing QTLs for SK resistance traits near M1a (LG C 7 EL-2, R2 = 13.1-31.5 %) and EPPISF032 (LG C 7 EL-4, R2 = 11-14 %) and the others containing QTLs for FL resistance, near markers SNP_IGA_320761 and SNP_IGA_321601 (LG3, R2 = 3.0-11.0 %). These results suggest that in the C 7 EL F1 progeny, skin resistance to fungal penetration and flesh resistance to rot spread are distinguishable mechanisms constituting BR resistance trait, associated with different genomic regions. Discovered QTLs and their associated markers could assist selection of new cultivars with enhanced resistance to Monilinia spp. in fruit
    • …
    corecore