121 research outputs found

    Tuning the adhesive geometry of neurons: length and polarity control.

    No full text
    International audienceNeurons acquire their functional and morphological axo-dendritic polarity by extending, from competing minor processes (neurites), one long axon among numerous dendrites. We employed complementary sets of micropatterns built from 2 and 6 μm wide stripes of various lengths to constrain hippocampal neuron shapes. Using these geometries, we have (i) limited the number of neuronal extensions to obtain a minimal in vitro system of bipolar neurons and (ii) controlled the neurite width during growth by the generation of a progressive cell shape asymmetry on either side of the cellular body. From this geometrical approach, we gained a high level of control of each neurite length and of the localization of axonal specification. To analyze these results, we developed a model based on a width and polarization dependent neurite elongation rate and on the existence of a critical neurite length that sets the axonal fate. Our data on the four series of micro-patterns developed for this study are described by a single set of growth parameters, well supported by experiments. The control of neuronal shapes by adhesive micro-patterns thereby offers a novel paradigm to follow the dynamical process of neurite lengthening and competition through the process of axonal polarization

    Combined magnetic and chemical patterning for neural architectures

    Full text link
    In vitro investigation of neural architectures requires cell positioning. For that purpose, micro-magnets have been developed on silicon substrates and combined with chemical patterning to attract cells to adhesive sites and keep them there during incubation. We have shown that the use of micro-magnets allows to achieve a high filling factor (~90%) of defined adhesive sites in neural networks and prevents migration of cells during growth. This approach has great potential for neural interfacing by providing accurate and time-stable coupling with integrated nanodevices

    Reconstruction of directed neuronal networks in a microfluidic device with asymmetric microchannels

    Get PDF
    International audienceMicrofluidic devices for controlling neuronal connectivity in vitro are extremely useful tools for deciphering pathological and physiological processes occurring in neuronal networks. These devices allow the connection between different neuronal populations located into separate culture chambers through axon-selective microchannels. In order to implement specific features of brain connectivity such as directionality, it is necessary to control axonal growth orientation in these devices. Among the various strategies proposed to achieve this goal, one of the most promising and easily reproducible is the use of asymmetric microchannels. We present here a general protocol and several guidelines for the design, production and testing of a new paradigm of asymmetric microchannels geometries based on a “return to sender” strategy. In this method, axons are either allowed to travel between the emitting and receiving chambers within straight microchannels (forward direction), or are rerouted toward their initial location through curved microchannels (reverse direction). We introduce variations of these “arches” microchannels and evaluate their respective axonal filtering capacities. Importantly, one of these variants presents an almost complete filtration of axonal growth in the non-permissive direction while allowing robust axonal invasion in the other one, with a selectivity ratio as high as 99.7%

    Nanoscale surface topography reshapes neuronal growth in culture

    Get PDF
    International audienceNeurons are sensitive to topographical cues provided either by in vivo or in vitro environments on the micrometric scale. We have explored the role of randomly distributed silicon nanopillars on primary hippocampal neurite elongation and axonal differentiation. We observed that neurons adhere on the upper part of nanopillars with a typical distance between adhesion points of about 500 nm. These neurons produce fewer neurites, elongate faster, and differentiate an axon earlier than those grown on flat silicon surfaces. Moreover, when confronted with a differential surface topography, neurons specify an axon preferentially on nanopillars. As a whole, these results highlight the influence of the physical environment in many aspects of neuronal growth

    Rapid Identification of Malaria Vaccine Candidates Based on α-Helical Coiled Coil Protein Motif

    Get PDF
    To identify malaria antigens for vaccine development, we selected α-helical coiled coil domains of proteins predicted to be present in the parasite erythrocytic stage. The corresponding synthetic peptides are expected to mimic structurally “native” epitopes. Indeed the 95 chemically synthesized peptides were all specifically recognized by human immune sera, though at various prevalence. Peptide specific antibodies were obtained both by affinity-purification from malaria immune sera and by immunization of mice. These antibodies did not show significant cross reactions, i.e., they were specific for the original peptide, reacted with native parasite proteins in infected erythrocytes and several were active in inhibiting in vitro parasite growth. Circular dichroism studies indicated that the selected peptides assumed partial or high α-helical content. Thus, we demonstrate that the bioinformatics/chemical synthesis approach described here can lead to the rapid identification of molecules which target biologically active antibodies, thus identifying suitable vaccine candidates. This strategy can be, in principle, extended to vaccine discovery in a wide range of other pathogens

    How Morphological Constraints Affect Axonal Polarity in Mouse Neurons

    Get PDF
    Neuronal differentiation is under the tight control of both biochemical and physical information arising from neighboring cells and micro-environment. Here we wished to assay how external geometrical constraints applied to the cell body and/or the neurites of hippocampal neurons may modulate axonal polarization in vitro. Through the use of a panel of non-specific poly-L-lysine micropatterns, we manipulated the neuronal shape. By applying geometrical constraints on the cell body we provided evidence that centrosome location was not predictive of axonal polarization but rather follows axonal fate. When the geometrical constraints were applied to the neurites trajectories we demonstrated that axonal specification was inhibited by curved lines. Altogether these results indicated that intrinsic mechanical tensions occur during neuritic growth and that maximal tension was developed by the axon and expressed on straight trajectories. The strong inhibitory effect of curved lines on axon specification was further demonstrated by their ability to prevent formation of multiple axons normally induced by cytochalasin or taxol treatments. Finally we provided evidence that microtubules were involved in the tension-mediated axonal polarization, acting as curvature sensors during neuronal differentiation. Thus, biomechanics coupled to physical constraints might be the first level of regulation during neuronal development, primary to biochemical and guidance regulations

    Stimulating a Canadian narrative for climate

    Get PDF
    ABSTRACT: This perspective documents current thinking around climate actions in Canada by synthesizing scholarly proposals made by Sustainable Canada Dialogues (SCD), an informal network of scholars from all 10 provinces, and by reviewing responses from civil society representatives to the scholars' proposals. Motivated by Canada's recent history of repeatedly missing its emissions reduction targets and failing to produce a coherent plan to address climate change, SCD mobilized more than 60 scholars to identify possible pathways towards a low-carbon economy and sustainable society and invited civil society to comment on the proposed solutions. This perspective illustrates a range of Canadian ideas coming from many sectors of society and a wealth of existing inspiring initiatives. Solutions discussed include climate change governance, low-carbon transition, energy production, and consumption. This process of knowledge synthesis/creation is novel and important because it provides a working model for making connections across academic fields as well as between academia and civil society. The process produces a holistic set of insights and recommendations for climate change actions and a unique model of engagement. The different voices reported here enrich the scope of possible solutions, showing that Canada is brimming with ideas, possibilities, and the will to act
    corecore