6 research outputs found

    Callus culture development from two varieties of Tagetes erecta and carotenoids production

    Get PDF
    AbstractBackgroundThe properties of natural pigments, such as antioxidants, functional, medical, and nutraceutical, have demonstrated the advantages of these natural compounds over synthetic ones. Some products are accepted only when they are pigmented with natural, food-quality colorants: for example poultry products (manly marigold flower extracts). Carotenoids such as ÎČ-carotene, ÎČ-criptoxanthin and lutein are very attractive as natural food colorants due to their antioxidant and pro-vitamin activities which provide additional value to the target products. Marigold (Tagetes erecta) is an Asteraceous ornamental plant native to Mexico, and it is also important as a carotenoid source for industrial and medicinal purposes but nowadays its production is destined mainly for ornamental purposes.ResultsFriable callus of T. erecta yellow flower (YF) and white flower (WF) varieties was induced from leaf explants on Murashige and Skoog (MS) medium supplemented with 9.0ÎŒM 4-dichlorophenoxyacetic acid (2,4-D) and 8.8ÎŒM benzyladenine (BA). Calluses developed from both varieties were different in pigmentation. Extract characterization from callus cultures was carried out by high-performance liquid chromatography (HPLC). This analytical process detected several carotenoids; the main pigments in extracts from YF callus were lutein and zeaxanthin, whereas in the extracts of the WF callus the main pigments were lutein, zeaxanthin, ÎČ-cryptoxanthin and ÎČ-carotene. Callus cultures of T. erecta accumulated pigments even after several rounds of subculture.ConclusionsWF callus appeared to be a suitable candidate as a source of different carotenoids, and tested varieties could represent an alternative for further studies about in vitro pigment production

    Assessment of the differences in the phenolic composition and color characteristics of new strawberry (Fragaria x ananassa Duch.) cultivars by HPLC–MS and Imaging Tristimulus Colorimetry

    Get PDF
    The phenolic composition (by HPLC-DAD-MS) and color characteristics (by Imaging Tristimulus Colorimetry) of four strawberry cultivars that have shown good climate adaptation to subtropical area (Nikte, Zamorana, Jacona and Pakal) have been assessed. 24 monomeric phenolics were identiïŹed, including 15 anthocyanins, 5 phenolic acids, 1 ïŹ‚avanol and 4 ïŹ‚avonols. Nikte and Zamorana showed the highest phenolic potential mainly due to their higher content of anthocyanins, while Pakal was richer in phenolic acids. Regarding color, Nikte and Zamorana were the more similar cultivars having the lowest values of lightness and hue. On the contrary, the color of Pakal was quite different from all the rest, due to the speciïŹc distribution between pelargonidin and cyanidin. The inclusion of both phenolic and colorimetric information in the Linear Discriminant Analysis allowed reaching very good discriminations among cultivar

    Morphostructural Characterization of Rice Grain (Oryza sativa L.) Variety Morelos A-98 during Filling Stages

    Get PDF
    The morphostructure of grain rice Morelos A-98 was characterized in five stages of physiological maturation, in order to generate morphometric information during the filling process. Micrographic images from optical and scanning electron microscopy coupled to a digital capture system were used. Images were digitally processed to measure different descriptors such as shape, fractal dimension, and surface texture. Results showed that, two weeks after anthesis, an accelerated grain filling was observed, particularly on those grains positioned in the distal panicle zone, compared to those located in the base of this one. As deposition of assimilates in the grain increased, the area and perimeter of the transversal cut of the grains also increased (P ≀ 0.05); meanwhile, the rounded shape factor tended to increase as well (P ≀ 0.05), while the elliptic shape factor decreased. As the dehydrated endosperm passed from “milky” to “doughy” stages, values of fractal dimension area and endosperm perimeter as well as surface texture values showed that grain borders tended to become smoother and that there was a greater structured endosperm area (P ≀ 0.05)

    Chemical analysis of callus extracts from toxic and non-toxic varieties of Jatropha curcas L.

    No full text
    Jatropha curcas L. belongs to Euphorbiaceae family, and it synthesizes flavonoid and diterpene compounds that have showed antioxidant, anti-inflammatory, anticancer, antiviral, antimicrobial, antifungal and insecticide activity. Seeds of this plant accumulate phorbol esters, which are tigliane type diterpenes, reported as toxic and, depending on its concentration, toxic and non-toxic varieties has been identified. The aim of this work was to characterize the chemical profile of the extracts from seeds, leaves and callus of both varieties (toxic and non-toxic) of Jatropha curcas, to verify the presence of important compounds in dedifferentiated cells and consider the possibility of using these cultures for the massive production of metabolites. Callus induction was obtained using NAA (1.5 mg L−1) and BAP (1.5 mg L−1) after 21 d for both varieties. Thin layer chromatography analysis showed differences in compounds accumulation in callus from non-toxic variety throughout the time of culture, diterpenes showed an increase along the time, in contrast with flavonoids which decreased. Based on the results obtained through microQTOF-QII spectrometer it is suggested a higher accumulation of phorbol esters, derived from 12-deoxy-16-hydroxy-phorbol (m/z 365 [M+H]+), in callus of 38 d than those of 14 d culture, from both varieties. Unlike flavonoids accumulation, the MS chromatograms analysis allowed to suggest lower accumulation of flavonoids as the culture time progresses, in callus from both varieties. The presence of six glycosylated flavonoids is also suggested in leaf and callus extracts derived from both varieties (toxic and non-toxic), including: apigenin 6-C-α-L-arabinopyranosyl-8-C-ÎČ-D-xylopyranoside (m/z 535 [M+H]+), apigenin 4â€Č-O-rhamnoside (m/z 417 [M+H]+), vitexin (m/z 433 [M+H]+), vitexin 4â€Č-O-glucoside-2″-O-rhamnoside (m/z 741 [M+H]+), vicenin-2 (m/z 595 [M+H]+), and vicenin-2,6″-O-glucoside (m/z 757 [M+H]+)
    corecore