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Background: The properties of natural pigments, such as antioxidants, functional,medical, and nutraceutical, have
demonstrated the advantages of these natural compounds over synthetic ones. Some products are accepted only
when they are pigmented with natural, food-quality colorants: for example poultry products (manly marigold
flower extracts). Carotenoids such as β-carotene, β-criptoxanthin and lutein are very attractive as natural food
colorants due to their antioxidant and pro-vitamin activities which provide additional value to the target
products. Marigold (Tagetes erecta) is an Asteraceous ornamental plant native to Mexico, and it is also important
as a carotenoid source for industrial and medicinal purposes but nowadays its production is destined mainly for
ornamental purposes.
Results: Friable callus of T. erecta yellow flower (YF) and white flower (WF) varieties was induced from leaf
explants on Murashige and Skoog (MS) medium supplemented with 9.0 μM 4-dichlorophenoxyacetic acid

(2,4-D) and 8.8 μM benzyladenine (BA). Calluses developed from both varieties were different in pigmentation.
Extract characterization from callus cultures was carried out by high-performance liquid chromatography
(HPLC). This analytical process detected several carotenoids; the main pigments in extracts from YF callus
were lutein and zeaxanthin, whereas in the extracts of theWF callus themain pigments were lutein, zeaxanthin,
β-cryptoxanthin and β-carotene. Callus cultures of T. erecta accumulated pigments even after several rounds of
subculture.
Conclusions:WF callus appeared to be a suitable candidate as a source of different carotenoids, and tested varieties
could represent an alternative for further studies about in vitro pigment production.
© 2014 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction
Natural pigments are involved in essential processes for theplant life
such as photosynthesis, plant protection and reproduction among
others [1,2]. Carotenoids, a large group of fat-soluble natural pigments
of higher plants and other organisms, are responsible for the yellow,
orange, and red colors in plants, animals, bacteria, and fungi [3]. The
carotenoid biosynthesis pathway has been widely studied and it is
important to continue analyzing it in different plant sources [4]. These
compounds are the second most abundant pigments in nature and are
artínez).
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involved in an important set of reactions in plant reproduction, through
their role in attracting pollinators and seed dispersers. It is well
recognized that the main function of these pigments in green tissues
is protecting photosynthetic apparatus [5]. The nature annual
production of carotenoids is about 100 million tons [6] and they are of
pharmaceutical interest for uses not only as natural food colorants, but
also by playing an important role in human nutrition and health [2].
Furthermore, the intake of carotenoid-rich products has been associated
to lower incidence of certain disorders like cancer and cardiovascular
illnesses [7,8]. Lutein and zeaxanthin are macular pigments that might
play an important role by reducing development and progression of
age-related macular degeneration [9,10]. Carotenoid analysis involves
extraction, saponification, separation, and characterization, for both
identification and quantification. Best results have been obtained by
high-performance liquid chromatography (HPLC), which is the most
efficient method for the qualitative and quantitative analyses of
carotenoids. The efficiency of this technique has been improved by
diode array detector (DAD) allowing detection at several wavelengths
and simultaneous putative identification by UV spectral analyses [4,11].
vier B.V. All rights reserved.
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A number of research works on this subject have been reported over
the last few years to deal with the optimization of carotenoid production
methodologies [12]. Thus, obtaining pigments through plant cell tissue
culture, microbial fermentations, and genetic manipulation has been
investigated. Current trends in industrial production have focused on
introducing environmentally safer biotechnological processes. Bacteria
(Flavobacterium multivorum, Brevibacterium linens), fungi (Phaffia
rhodozyma, Blakeslea trispora, Phycomyces blakesleanus) andmicroalgae
(Haematococcus pluvialis, Dunaliella salina) have been considered for
carotenoid production [13]. Carotenoid production from plants
frequently involves extraction from different plant tissues, being often
tedious and costly due to low yields, and the target compounds may
be only seasonally available [14]. Plant cell culture methodologies
have the potential to overcome many of these problems. A number of
publications to date have succeeded in producing a wide range of
valuable secondary metabolites from unorganized callus or suspension
cultures such as ginseng (Panax ginseng) and taxol (Taxus baccata) [15].

Large scale plant tissue culture has been demonstrated as being an
alternative approach to traditional crops as it offers controlled supply
of metabolites, independent of plant availability [16]. Due to these
advances, research in the area of tissue culture technology for
production of plant chemicals has bloomed beyond expectations,
producing useful compounds under controlled conditions independent
of climatic changes or soil status, free of microbes and insects [17,18]. In
this sense, plant tissue culture has been used for production of several
carotenoids, in different plants to simplify breeding procedures and
address agronomic and environmental problems facing crop production
[16,19]. Gao et al. [20] and Xu et al. [21] reported carotenoid production
from the callus of different citrus varieties stating that this callus may
help to understand the pigmenting mechanism in the future.
Furthermore, Vanegas-Espinoza et al. [22] observed that carotenoids
in T. erecta cells, mainly lutein, were accumulated in plastoglobular
substructures within the chromoplast, showing by HPLC analysis, the
presence of carotenoids in callus extracts. These studies reveal support
that a continuous system of cell proliferation as callus culture is a useful
tool for the study of carotenoids since they have acquired importance
because of their biological functions.

There are few biotechnological researches referring to the cellular
pigment content [22]. The wide range of uses of T. erecta underlines
the importance of establishing a reliable plant tissue culture system
for in vitro carotenoid production. In this work, we describe the
establishment of a cell culture from two contrasting pigment
varieties (yellow and white flowers) of T. erecta, in order to
qualitatively compare pigment presence and accumulation for their
further utilization in breeding strategies to modify carotenoids
biosynthetic pathway and their cellular storage.

2. Materials and methods

2.1. Plant material

Plantlets were obtained by seed germination of two marigold
(T. erecta) varieties: yellow flowers (YF) donated by Dr. Miguel Ángel
Serrato-Cruz from Universidad Autónoma Chapingo, Texcoco, Estado
de México, México and white flowers (WF), from Plántulas de Tetela
S. de R.L. de C.V., Cuernavaca, Morelos, México. Disinfestation of three
lots of 20 seeds from each variety was performed as follows: ethanol
(100%) for 1 min, ethanol (70%) for 5 min, sodium hypochlorite (2%)
for 15 min and sodium hypochlorite (1%) for 15min. Seeds were rinsed
for 3 min in sterile distilled water between each treatment [19].
Disinfested seeds were germinated on Murashige and Skoog (MS)
medium [23] supplemented with sucrose (30 mg/l) and 3 g/l Phytagel
(Sigma-Aldrich, USA). pH was adjusted to 5.8, and seed germination
was conducted in baby-food flasks (8 cm h × 6.2 cm d, 190 ml)
incubated in a growth chamber at 25 ± 2°C under fluorescent
light (50 μmol/m2 s-1) and 16/8 h light/dark photoperiod cycle.
2.2. Germination test

The germination index and germination velocity were calculated
according to Enríquez-Peña et al. [24], using the following equations:

IG ¼
X

nitið Þ
N

½Equation 1�

where:

IG germination index
ni number of germinate seeds in the day i
ti d after initiating culture
N total number of planted seeds.

M ¼
X nið Þ

t
½Equation 2�

where:

M germination velocity
t time of germination after initiating culture until germination

of the last seed.

2.3. Callus induction and maintenance

Threeweek-old plantlets were used as a source of explants for callus
induction. Young leaves were cut in portions of about 0.25 cm2 and
the adaxial face was placed on the MS medium described above,
supplemented with all combinations of 2,4-dichlorophenoxyacetic
acid (2,4-D; 4.5, 9.0, 13.5 μM) and benzyl adenine (BA; 2.2, 4.4,
8.8 μM), according to Vanegas-Espinoza et al. [22]. Cultures were
incubated in the dark at 25 ± 2°C for three weeks. Callus induction
percentages were determined after three weeks of culture. Obtained
calluseswere continuously subcultured every 15 d to freshMSmedium,
supplementedwith 2,4-D/BA concentrations defined in the experiment
above, to reduce the browning of callus.

2.4. Callus growth evaluation

In order to study kinetic growth of marigold callus, a culture was
started with 0.2 g of callus. Cultures were kept in the dark at 25 ± 2°C
and evaluated after 18 d. Callus samples were dried to constant weight
at 40°C for 24 h, and growth was measured in relation to dry weight.
Doubling time growth was calculated with a graphic method using the
equations:

Td ¼ ln 2
m

½Equation 3�

where:

Td doubling time growth
ln2 natural logarithm
m slope of the line.

Cell growth data in the form of natural logarithmwas plotted versus
time. This yields a straight line over the exponential phase of growth.
The slope of the linear part of the curve corresponds to μ and is given
in 1/unit of time [25].

2.5. Pigments analysis

Carotenoid extraction was performed according to Vanegas-
Espinoza et al. [20] with some modifications, 0.2 g of lyophilized callus



Table 1
Effect of 2,4-D and BA on callus induction from leaf explant of Tagetes erecta varieties of
yellow flowers (YF) and white flowers (WF) after 15 d culture.

Plant growth regulator (μM) YF callus induction WF callus induction

2,4-D BA (%) (%)

4.5 2.2 10.0c 30.0d

4.4 19.5b 66.6c

8.8 10.0c 70.0bc

9.0 2.2 10.0c 36.6d

4.4 8.2c 83.3a

8.8 32.0a 73.3b

13.5 2.2 4.9d 76.0b

4.4 8.0c 86.6a

8.8 6.0cd 76.6b

Values with different upper case letters are statistically different within columns
(P b 0.05).
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was extracted with 3 ml of hexane:absolute ethanol:acetone:toluene
(10:6:7:7 v/v/v/v), and 40% methanolic KOH solution for 4 h in
darkness and constant agitation. The chromatographic analyses
were performed on an Agillent system comprising a quaternary
pump, a diode array detector (DAD), a column temperature control
module, and an autosampler (Agillent 1100, Palo Alto, CA). The
separations were achieved on a C30 column (5 μl, 250 b × 4.6 mm)
(YMC, Wilmington, NC) kept at 17°C. Methanol (MeOH), tert-butyl
methyl ether (TBME) (both containing 0.1% of butylated
hydroxytoluene and 0.05% of triethylamine) and water were used in
the mobile phase according to the following linear gradient: 90%
MeOH + 5% TBME + 5% water; 12 min: 95% MeOH + 5% TBME;
25 min: 89% MeOH + 11% TBME; 40 min: 75% MeOH + 25% TBME;
60min: 50%MeOH+50% TBME; and 62min: 90%MeOH+5% TBME+
5% water. The monitoring of the peaks was carried out at 430, 450
and 486 nm and the flow and sample volumes drawn were set at
1 ml/min and 20 μl, respectively. Criteria for pigment identification
included retention time, UV spectra at 450 nm using diode array detector
compared to carotenoid standards (lutein, β-carotene, astaxanthin and
zeaxanthin standards; Sigma-Aldrich, USA) and absorbance maxima
from spectra as described by Meléndez-Martínez et al. [26].

2.6. Statistical analysis

Factorial analysis was carried out in order to analyze the effect of
treatments and their interactions. Fisher's least significant difference
(p = b0.05) was applied to show statistical significance on differences
among the means.

3. Results

3.1. Germination and callus induction

Seeds of both T. erecta varieties germinated after 5 d of culture on
free MS medium. Plantlet elongation and cotyledonal leaf development
were observed after 5 d of culture and foliage leaves appeared after 10 d
(Fig. 1). Germination of YF variety was 90%, IG = 4.5 d and M =
12.5 seeds/d, while WF presented 83% germination, IG = 4.4 d and
M = 3.3 seeds/day. Leaves from these seedlings were used as initial
explant for callus induction on MS medium with combinations of 2,4-D
and BA.

During the first week of culture both explant varieties remained
green. After that, explants lost pigmentation because of dedifferentiation
process; on the second week callus formation was evident, and on the
third week they were completely undifferentiated. Callus induction
was different for both varieties at the 15th day and was classified
as either compact or friable. Percentage of callus induction is shown
in Table 1; calluses from YF explants were friable and bright yellow on
MS 2,4-D (9.0 μM) and BA (8.8 μM) and those from WF explants were
friable and pale yellow under the same conditions (Fig. 2a and b).
Nevertheless other treatments produced higher callus induction, but
Fig. 1. Process of germination and seedling
they were compact and brownish, with nodular structures which could
be the subject of another study, which would examine the possibility
of inducing somatic embryos (Fig. 2c and d).

Callus inductionwas observed on leaf explant after 10 d of culture on
MS 2,4-D (9.0 μM) and BA (8.8 μM) (Fig. 3). After four subcultures to
fresh medium calluses maintained their friability and showed different
pigmentations (Fig. 4).
3.2. Callus growth and production of carotenoids

The growth curve of both cell cultures is illustrated in Fig. 5. The
culture growth was developed in two phases: (adaptation and growth)
during 18 d of culture onMSmedium addedwith 2,4-D (9.0 μM) and BA
(8.8 μM). The adaptation phase of YF callus was observed from 0 to
about 11 d of subculture without an important increase in dry weight
and, the growth phase was observed from d 11 up to 18 d (Fig. 5a).
The doubling time of YF callus culture was 3.3 d, and the growth rate
was 0.33 d-1. Meanwhile the adaptation phase of the WF callus culture
was observed at about 7 d and there was an increased growth phase
from that moment up to 17 d (Fig. 5b). The doubling time of WF callus
culture was 3.3 d, and the growth rate was 0.29 d-1. Based on the
features of culture growth of both varieties, calluses were continuously
subcultured every 15 d on freshmediummaintaining their friability and
reducing the browning of callus.

In order to study the carotenoid contentswithin calluses of YF andWF
varieties, carotenoid content of both calluses was HPLC analyzed (Fig. 6).
HPLC profile of the YF variety callus showed two main peaks (Fig. 6a).
Lutein was eluted at 23.4 min, and zeaxanthin at 26.5 min. Pigment
profiles corresponded to absorbance spectra (Fig. 6c). HPLC profile of
the WF callus showed a main peak at 23.6 min corresponding to lutein
and some minor peaks at 26.1, 37.6 and 47.2 min, which match with
retention times and absorption spectra corresponding to zeaxanthin,
β-cryptoxanthin and β-carotene, respectively (Fig. 6b). Lutein was the
main pigment found in both extract varieties.
development of T. erecta during 20 d.



Fig. 2.Appearance of callus induced from T. erecta leaves after 15 d of culture. In detail: (a) and (b) Friable callus fromYF andWF explants, respectively, onMS 2,4-D (9.0 μM)/BA (8.8 μM);
(c) compact callus fromYF onMS 2,4-D (4.5 μM)/BA (8.8 μM); and (d) compact calluswith nodular structures fromWF explants onMS 2,4-D (4.5 μM)/BA (8.8 μM). Bar represents 1.0mm.
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4. Discussion

In this study, two varieties of T. erecta with different inflorescence
pigmentations have been in vitro screened for their possibility to
undergo carotenoid production from callus culture, and contribute to
the understanding of the regulation of the carotenoid biosynthesis
pathway in this kind of cell. Leaf explants have proved to be an adequate
tissue to establish cell cultures, because of the presence of ameristematic
tissue in young leaves, allowing continuous mitotic division, which is
increasedwhen tissues are exposed to auxin and cytokinin in the culture
medium [27]. 2,4-D (9.0 μM) and BA (8.8 μM) were found to be the
suitable combination for friable callus induction; this was demonstrated
in terms of a high induction percentage. Although thereweremediawith
higher callus induction, friable callus was induced on mentioned
concentrations; this variation in callus induction/differentiation on
different concentrations of growth regulators depends on the
morphogenetic response which varies according to spatial and
temporal cell distributions, and on physiological and developmental
stages [28]. Endogenous concentrations of growth hormones and tissue
Fig. 3. T. erecta callus induction process from YF (yellow flowers) and WF (white flowers
response is genetically regulated [29], and the use of young leaves as a
source of explant was previously reported in marigold (T. erecta) by
Misra and Datta [30]. Nodular callus was observed with all the
concentrations of 2,4-D and BA in this study, and these structures
have been reported as early stages of somatic embryogenesis [31].
Kandasamy et al. [32] suggested that medium hormonal composition
plays an important role in determining the type of cells of the explant
which would undergo division, phytohormones are evidently involved
in the switch-over from the mitotic cell cycle to the endomitotic cell
cycle and vice versa, auxin generally stimulates DNA synthesis, cell
division, cell expansion, cell differentiation, and organ initiation while
cytokinin acts as a trigger for mitosis and callus proliferation [33], and
auxins and cytokinins like 2,4-D and BA are also known to induce the
rapid synthesis of specific mRNAs and proteins suggesting that they are
necessary to regulate these growth processes. Exogenous application of
hormones initiates a variety of biochemical events, that culminate in
processes directed to the cytoskeleton by the activation of the family of
transcription factor genes, called “auxin response factors” and “cytokinin
response factors” [34,35]. Moreover, the concentration of exogenous
), on MS added with 9.0 μM 2,4-D and 8.8 μM of BA. In detail: Bar represents 1.0 mm.

image of Fig.�2
image of Fig.�3


Fig. 4. Callus obtained from leaf explant of T. erecta variety on MS supplemented with 2,4-D (9.0 μM) and BA (8.8 μM). YF (yellow flowers) and WF (white flowers).
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and endogenous phytohormones can inhibit the induction of the
undifferentiation process by competition of specific receptor; these
competitions interfere with themetabolism of DNA and RNA [36]. Tested
2,4-D/BA combinations showed different responses like the degree of
compaction of callus, and unfriable/friable callus, and these effect were
influenced by auxin and cytokinin rate during cell division, cell elongation
and cell differentiation, although exactly how they are involved in each
process is not completely understood. However, Arabidopsis thaliana
callus induced by hormones shows enhanced actin gene expression
containing several putative hormone response DNA sequence elements;
i.e. act7 gene constitutes the predominant actin gene in tissue culture
cells, and has an essential role to play during hormone induced callus
formation [32]. The different effects observed on the explants of both
T. erecta varieties tested was probably influenced by expression of actin
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Fig. 5. Callus growth of Tagetes erecta varieties. YF (a) and WF (b) on MS medium
supplementedwith 2,4-D (9.0 μM)with BA (8.8 μM). Time courses of biomass accumulation
of YF and WF callus culture at 18 d. Each dot and bar shows the average ± SD of three
independent samples.
genes and transcription factors that respond to several external
stimulation including concentration of 2,4-D/BA tested.

Though 2,4-D (4.5 μM) and BA (8.8 μM) stimulated the formation of
two kinds of calluses showing different morphologies; one of them with
nodular structures could be related with embryogenic callus formation
[37]. Michelangeli de Clavijo et al. [38] reported in Bixa orellana L.
cultures, proembryos (nodular structures), spherical structures, with
cells of variable shape and size, originating from callus surface, after the
initial stages globular and heart-shaped somatic embryos was observed.
Embryogenic callus induction and somatic embryo development from
cotyledonary explants of T. erecta on 2,4-D (4.5 μM)/kinetin (0.93 μM)
medium were reported previously by Bespalhok and Hattori [39].

The main carotenoids in the extracts from the YF callus were lutein
and zeaxanthin, whereas those in the extracts of the WF callus were
lutein, zeaxanthin, β-cryptoxanthin and β-carotene. Lutein was the
main pigment in both calluses (YF and WF). It is important to point that
lutein accumulation occurs not only in specialized tissue, it has been
reported that on undifferentiated tissue (callus), chromoplasts are
the organelles where carotenoid synthesis and storage occurs [22].
Interestingly, lutein content diminished in callus fromWF; onmarigold
ligules, a similar pattern was observed before with a yellow variety that
accumulates high concentrations of lutein, while the white flower
almost abolished lutein accumulation [14]. Natural pigment production
by cell culture has been previously reported [1,40]. Callus culture of
T. erecta accumulated pigment even after several rounds of subculture.
WF callus accumulated also β-carotene, β-cryptoxanthin and zeaxanthin,
and it could be an alternative source for pigment production; since they
are better pigmenting agents for egg yolk and broiler skin than lutein,
[41]. Several plants (Capsicum annuum, Lycium barbarum, Hippophae
rhamnoides, Physalis alkekengi, Diospyros kaki and Cucurbita pepo) have
been studied because of their high carotenoid content and have been
proposed as source of these compounds for industry [42,43], therefore
T. recta callus as an important source of lutein and other carotenoids
such as zeaxanthin would be an option for food or pharmaceutical
industry.

Selection of highly producing systems of carotenoids, by means of
T. erecta cell culture establishment, could be the basis for their use to
produce other biochemical compounds using alternative techniques
such as biosynthetic pathway induction and/or genetic modification
which have proven to be efficient to increase the accumulation of
secondary metabolites.

5. Concluding remarks

This work reports the qualitative comparison of carotenoid
production in callus from two T. erecta varieties with contrasting
pigmentation (YF and WF), and it was shown that both varieties had

image of Fig.�5


Fig. 6.HPLC profile of total carotenoid extract of callus from Tagetes erecta varieties. (a) YF, (b)WF, (c) Absorbance spectra. 1) lutein, 2) zeaxanthin, 3) β-cryptoxanthin and 4) β-carotene.
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similar responses on friable callus induction. However they showed
differences on carotenoid content (YF, lutein, zeaxanthin; WF, lutein,
zeaxanthin; β-cryptoxanthin and β-carotene). Interestingly our results
showed that callus from the variety with less pigmented flowers (WF)
contained more compounds compared to callus from the pigmented
variety (YF), a very important feature and, whereas both varieties
induced callus in different proportions, this must be considered for
further research work about modification of the carotenoid biosynthesis
pathway, on in vitro culture cells in order to produce pigments with
relevance in the food, pharmacy and feed industries.
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