765 research outputs found

    Putrescine-polysaccharide conjugate as transglutaminase substrates and their possible use in producing crosslinked films

    No full text
    Putrescine (1,4-diaminobutane) was covalently linked to alginate and low-methoxyl pectin to synthesize new aminated polysaccharides. Both putrescine-pectin and -alginate conjugates, although the latter at higher concentrations, were found to be able to act as effective acyl acceptor transglutaminase substrates in vitro using both dimethylated casein and soy flour proteins as acyl donors. Monodansylcadaverine, a well known acyl acceptor transglutaminase substrate, dose-dependently counteracted the covalent binding of the aminated polysaccharides to the proteins. Putrescine-pectin conjugate was also tested to prepare, in combination with soy flour proteins, edible films in the presence of purified microbial transglutaminase. Characterization of the enzymatically crosslinked films showed a significant decreased water vapor permeability, with respect to the ones obtained with non-aminated pectin in the presence of transglutaminase, as well as improved mechanical properties, such as high extensibility. Possible biotechnological applications of hydrocolloid films containing putrescine-polysaccharide derivatives enzymatically crosslinked to proteins were suggested

    Complicaciones orales de la quimioterapia antineoplásica

    Get PDF
    Las complicaciones orales debidas a la quimioterapia antineoplásica pueden disminuir de forma importante el éxito terapéutico, así como la calidad de vida y la supervivencia de los paciente. En el presente trabajo describimos las principales complicaciones (mucositis, xerostomía, infecciones y hemorragia), así como las medidas adecuadas para su prevención y tratamiento, haciendo referencia a las pautas que debe seguir el odontólogo para higienizar el medio oral, realizar un correcto manejo estomatológico de estos pacientes y prevenir secuelas como la caríes

    Transglutaminase-catalyzed site-specific glycosidation of catalase with aminated dextran

    No full text
    An enzymatic approach, based on a transglutaminase-catalyzed coupling reaction, was investigated to modify bovine liver catalase with an end-group aminated dextran derivative. We demonstrated that catalase activity increased after enzymatic glycosidation and that the conjugate was 3.8-fold more stable to thermal inactivation at 55 ◦C and 2-fold more resistant to proteolytic degradation by trypsin. Moreover, the transglutaminase-mediated modification also improved the pharmacokinetics behavior of catalase, increasing 2.5-fold its plasma half-life time and reducing 3-fold the total clearance after its i.v. administration in rats

    Docentes de matemática formados y en formación algunos resultados sobre sus concepciones

    Get PDF
    El presente trabajo describe las concepciones sobre el aprendizaje en docentes universitarios de matemática formados y en formación. Con un diseño ex post facto se indagaron las concepciones de los sujetos respecto de qué es aprender, qué se aprende, cómo se aprende y qué y cómo se evalúa, utilizando para ello un cuestionario de dilemas. Los resultados muestran que tanto en el caso de los docentes formados como en formación, predomina la teoría constructiva en los aspectos relacionados a qué se aprende y qué es aprender. Respecto de qué y cómo se evalúa, predomina la teoría interpretativa. En relación a cómo se aprende, mientras que en los docentes formados predomina la teoría constructiva, en los docentes en formación, predomina la teoría interpretativa.Facultad de Humanidades y Ciencias de la Educació

    Peripheral inflammation preceeding ischemia impairs neuronal survival through mechanisms involving miR‐127 in aged animals

    Get PDF
    Envelliment; Inflamació; MicroARNEnvejecimiento; Inflamación; MicroARNAging; Inflammation; MicroRNAIschemic stroke, the third leading cause of death in the Western world, affects mainly the elderly and is strongly associated with comorbid conditions such as atherosclerosis or diabetes, which are pathologically characterized by increased inflammation and are known to influence the outcome of stroke. Stroke incidence peaks during influenza seasons, and patients suffering from infections such as pneumonia prior to stroke exhibit a worse stroke outcome. Earlier studies have shown that comorbidities aggravate the outcome of stroke, yet the mediators of this phenomenon remain obscure. Here, we show that acute peripheral inflammation aggravates stroke‐induced neuronal damage and motor deficits specifically in aged mice. This is associated with increased levels of plasma proinflammatory cytokines, rather than with an increase of inflammatory mediators in the affected brain parenchyma. Nascent transcriptomics data with mature microRNA sequencing were used to identify the neuron‐specific miRNome, in order to decipher dysregulated miRNAs in the brains of aged animals with stroke and co‐existing inflammation. We pinpoint a previously uninvestigated miRNA in the brain, miR‐127, that is highly neuronal, to be associated with increased cell death in the aged, LPS‐injected ischemic mice. Target prediction tools indicate that miR‐127 interacts with several basally expressed neuronal genes, and of these we verify miR‐127 binding to Psmd3. Finally, we report reduced expression of miR‐127 in human stroke brains. Our results underline the impact of peripheral inflammation on the outcome of stroke in aged subjects and pinpoint molecular targets for restoring endogenous neuronal capacity to combat ischemic stroke.This study was supported by Emil Aaltonen Foundation, Academy of Finland and Finnish Cultural Foundation

    Field testing, validation and optimization report

    Get PDF
    The COMMON SENSE project has been designed and planned in order to meet the general and specific scientific and technical objectives mentioned in its Description of Work (page 77). As the overall strategy, the 11 work packages (WPs) of the work plan were grouped into 3 key phases: (1) RD basis for cost-effective sensor development , (2) Sensor development, sensor web platform and integration, and (3) Field testing. In the first two phases, partners involved in WP1 and WP2 have provided a general understanding and integrated basis for a cost effective sensors development. Within the following WPs 4 to 8 the new sensors were created and integrated into different identified platforms. During the third phase of field testing (WP9), partners have deployed precompetitive prototypes at chosen platforms (e.g. research vessels, oil platforms, buoys and submerged moorings, ocean racing yachts, drifting buoys). Starting from August 2015 (month 22; task 9.2), these platforms have allowed the partnership to test the adaptability and performance of the in-situ sensors and verify if the transmission of data is properly made, correcting deviations. In task 9.1 all stakeholders identified in WP2 have been contacted in order to agree upon a coordinated agenda for the field testing phase for each of the platforms. Field testing procedures (WP2) and deployment specificities, defined during sensor development in WPs 4 to 8, have been closely studied by all stakeholders involved in field testing activities in order for everyone to know their role, how to proceed and to provide themselves with the necessary material and equipment (e.g. transport of instruments). All this information have provided the basis for designing and coordinating field testing activities. Subsequently, the available new sensors have been tested since August 2015 till mid-October of the current year (2016) as part of task 9.2, following the indications defined in D9.1, such as the intercomparison of the new sensors with commercial ones, when possible. The availability of new sensors was quite different in time starting with the first tests in September and October 2015 on noise, nutrient and heavy metals sensors and closing with pCO2 in late September 2016. Sensors are technically fully described in the deliverables of WPs 3 to 8 and are here just mentioned where necessary. For further details, please consider those reports. Objectives and rationale The protocols prepared in D9.1 have been verified during the field testing activities of the innovative sensors on platforms. These can be summarized into 3 categories: (1) Research vessels (regular cruises); (2) Fixed platforms; (3) Ocean racing yachts. An exhaustive analysis of the different data obtained during field testing activities has been carried on in order to set possible optimization actions for prototypes design and performances. The data from each platform have been analyzed to verify limits and optimal installations or possible improvements. Finally a set of possible optimization actions has been defined. Data and observations collected during the course of field testing have been used to iteratively optimize the design and performance of the precompetitive prototypes

    MOOC as a Way of Dissemination, Training and Learning of Telecommunication Engineering

    Get PDF
    In this chapter, the use of massive open online courses (MOOCs) for the dissemination, training capabilities and learning of telecommunication engineering is described taking as example the successful MOOC ‘Ultra- Dense Networks for 5G and its Evolution’ developed under the European innovative training network (ITN) TeamUp5G. MOOCs are usually understood as a way of teaching or learning for massive potential students. Indeed, this is the main goal of any MOOC. However, we also propose its use for training and dissemination. The ITN TeamUp5G is a training network for 15 PhD students of seven different institutions (universities and companies) where the students make research on different interconnected topics for the common goal of Ultra dense networks for 5G. At the same time they researched, they prepared a MOOC to disseminate their most recent advances and their challenges. For the MOOC, they needed to collect their thoughts, organizse their knowledge and establish a common vision of the whole system. The cooperative work, the cross-related meetings and, the preparation of all the materials for the MOOC were very interesting and useful in their training process. The whole experience of designing and creating the MOOC is described in detail along with the challenges and lessons learned.info:eu-repo/semantics/acceptedVersio

    Thirty Years After Michael E. Porter: What Do We Know About Business Exit?

    Get PDF
    Although a business exit is an important corporate change initiative, the buyer’s side seems to be more appealing to management researchers than the seller’s because acquisitions imply growth, i.e., success. Yet from an optimistic viewpoint, business exit can effectively create value for the selling company. In this paper we attempt to bring the relevance of the seller’s side back into our consciousness by asking: What do we know about business exit? We start our exploration with Porter (1976), focusing on literature that investigates the antecedents of, barriers to, and outcomes of business exit. We also include studies from related fields such as finance and economics.1 Through this research we determine three clusters of findings: factors promoting business exit, exit barriers, and exit outcomes. Overall, it is the intention of this paper to highlight the importance of business exit for research and practice. Knowing what we know about business exits and their high financial value we should bear in mind that exit need not mean failure but a new beginning for a corporation

    Protocols for the field testing

    Get PDF
    The COMMON SENSE project has been designed and planned in order to meet the general and specific scientific and technical objectives mentioned in its Description of Work (page 77). In an overall strategy of the work plan, work packages (11) can be grouped into 3 key phases: (1) RD basis for cost-effective sensor development, (2) Sensor development, sensor web platform and integration, and (3) Field testing. In the first two phases WP1 and WP2 partners have provided a general understanding and integrated basis for a cost effective sensors development. Within the following WPs 4 to 8 the new sensors are created and integrated into different identified platforms. During the third phase 3, characterized by WP9, partners will deploy precompetitive prototypes at chosen platforms (e.g. research vessels, oil platforms, buoys and submerged moorings, ocean racing yachts, drifting buoys). Starting from August 2015 (month 22; task 9.2), these platforms will allow the partnership to test the adaptability and performance of the in-situ sensors and verify if the transmission of data is properly made, correcting deviations. In task 9.1 all stakeholders identified in WP2, and other relevant agents, have been contacted in order to close a coordinated agenda for the field testing phase for each of the platforms. Field testing procedures (WP2) and deployment specificities, defined during sensor development in WPs 4 to 8, are closely studied by all stakeholders involved in field testing activities in order for everyone to know their role, how to proceed and to provide themselves with the necessary material and equipment (e.g. transport of instruments). All this information will provide the basis for designing and coordinating field testing activities. Type and characteristics of the system (vessel or mooring, surface or deep, open sea or coastal area, duration, etc.), used for the field testing activities, are planned comprising the indicators included in the above-mentioned descriptors, taking into account that they must of interest for eutrophication, concentration of contaminants, marine litter and underwater noise. In order to obtain the necessary information, two tables were realized starting from the information acquired for D2.2 delivered in June 2014. One table was created for sensor developers and one for those partners that will test the sensors at sea. The six developers in COMMON SENSE have provided information on the seven sensors: CEFAS and IOPAN for underwater noise; IDRONAUT and LEITAT for microplastics; CSIC for an innovative piro and piezo resistive polymeric temperature and pressure and for heavy metal; DCU for the eutrophication sensor. This information is anyway incomplete because in most cases the novel sensors are still far to be ready and will be developed over the course of COMMON SENSE. So the sensors cannot be clearly designed yet and, consequently, technical characteristics cannot still be perfectly defined. This produces some lag in the acquired information and, consequently, in the planning of their testing on specific platforms that will be solved in the near future. In the table for Testers, partners have provided information on fifteen available platforms. Specific answers have been given on number and type of sensors on each platforms, their availability and technical characteristics, compatibility issues and, very important when new sensors are tested, comparative measurements to be implemented to verify them. Finally IOPAN has described two more platforms, a motorboat not listed in the DoW, but already introduced in D2.2, and their oceanographic buoy in the Gdansk Bay that was previously unavailable. The same availability now is present for the OBSEA Underwater observatory from CSIC, while their Aqualog undulating mooring is still not ready for use. In the following months, new information on sensors and platforms will be provided and the planning of testing activities will improve. Further updates of this report will be therefore necessary in order to individuate the most suitable platforms to test each kind of sensor. Objectives and rationale The objective of deliverable 9.1 is the definition of field testing procedures (WP2), the study of deployment specificities during sensor development work packages (from WP4 to WP8) and the preparation of protocols. This with the participation of all stakeholders involved in field testing activities in order for everyone to know their role, how to proceed and to provide themselves with the necessary material and equipment
    corecore