111 research outputs found

    Exploring methods for developing local climate zones to support climate research

    Get PDF
    Unidad de excelencia María de Maeztu CEX2019-000940-MMeteorological and climate prediction models at the urban scale increasingly require more accurate and high-resolution data. The Local Climate Zone (LCZ) system is an initiative to standardize a classification scheme of the urban landscape, based mainly on the properties of surface structure (e.g., building, tree height, density) and surface cover (pervious vs. impervious). This approach is especially useful for studying the influence of urban morphology and fabric on the surface urban heat island (SUHI) effect and to evaluate how changes in land use and structures affect thermal regulation in the city. This article will demonstrate three different methodologies of creating LCZs: first, the World Urban Database and Access Portal Tools (WUDAPT); second, using Copernicus Urban Atlas (UA) data via a geographic information system (GIS) client directly; and third via Google Earth Engine (GEE) using Oslo, Norway as the case study. The WUDAPT and GEE methods incorporate a machine learning (random forest) procedure using Landsat 8 imagery, and offer the most precision while requiring the most time and familiarity with GIS usage and satellite imagery processing. The WUDAPT method is performed principally using multiple GIS clients and image processing tools. The GEE method is somewhat quicker to perform, with work performed entirely on Google's sites. The UA or GIS method is performed solely via a GIS client and is a conversion of pre-existing vector data to LCZ classes via scripting. This is the quickest method of the three; however, the reclassification of the vector data determines the accuracy of the LCZs produced. Finally, as an illustration of a practical use of LCZs and to further compare the results of the three methods, we map the distribution of the temperature according to the LCZs of each method, correlating to the land surface temperature (LST) from a Landsat 8 image pertaining to a heat wave episode that occurred in Oslo in 2018. These results show, in addition to a clear LCZ-LST correspondence, that the three methods produce accurate and similar results and are all viable options

    Urban agriculture - A necessary pathway towards urban resilience and global sustainability?

    Get PDF
    Unidad de excelencia María de Maeztu CEX2019-000940-MThe Covid-19 pandemic newly brings food resilience in cities to our attention and the need to question the desired degree of food self-sufficiency through urban agriculture. While these questions are by no means new and periodically entering the global research focus and policy discussions during periods of crises - the last time during the global financial crisis and resulting food price increases in 2008 - urban and peri-urban agriculture continue to be replaced by land-uses rendering higher market values (e.g. housing, transport, leisure). The loss of priority for urban agriculture in urban land-use planning is a global trend with only a few exceptions. We argue in this essay that this development has widely taken place due to three blind spots in urban planning. First, the limited consideration of social and ecological vulnerabilities and risk-related inequalities of urban inhabitants, food shortage among them, in the face of different scenarios of global change, including climate change or pandemic events such as Covid-19. Second, the disregard of the intensified negative environmental (and related social) externalities caused by distant agricultural production, as well as lacking consideration of nutrient recycling potentials in cities (e.g. from wastewater) to replace emission intensive mineral fertilizer use. Third, the lack of accounting for the multifunctionality of urban agriculture and the multiple benefits it provides beyond the provision of food, including social benefits and insurance values, for instance the maintenance of cultural heritage and agro-biodiversity. Along these lines, we argue that existing and new knowledge about urban risks and vulnerabilities, the spatially explicit urban metabolism (e.g. energy, water, nutrients), as well as ecosystem services need to be stronger and jointly considered in land-use decision-making

    Analysis of synoptic weather patterns of heatwave events

    Get PDF
    Altres ajuts: acords transformatius de la UABUnidad de excelencia María de Maeztu CEX2019-000940-MHeatwaves (HWs) are expected to increase both in duration and intensity in the next decades, but little is known about their synoptic and mesoscalar behavior, which is especially important in mid-latitude regions. Most climate research has focused on temperature analysis to characterize HWs. We propose that a combination of temperature and synoptic patterns is a better way to define and understand HWs because including atmospheric circulation patterns provides information about different HW structures that can irregularly affect the territory, and illustrate this approach at the regional and urban scales using the Iberian Peninsula and the Metropolitan Area of Barcelona as case studies. We first select HW events from 1950 to 2020 and apply a multivariate analysis to identify synoptic patterns based on mean sea level pressure, geopotential height at 500 hPa, and maximum daily 2 m temperature. The results indicate that four synoptic patterns reproduce at least 50% of the variance in HWs, namely, "stationary andstable", "dynamic and advective", "stationary and advective", and "dynamic, advective and undulated". Next, we apply the analysis to the Representative Concentration Pathway future scenarios (RCPs) 4.5 and 8.5 from the Coordinated Regional Climate Downscaling Experiment (CORDEX) to determine how these synoptic trends can change in the future. The analysis shows that the four synoptic patterns continue to explain 55 to 60% of the variance in HWs. Future HW events will be characterized by an increase in geopotential height at 500 hPa due to the northward shift of the anticyclonic ridge. This is especially true for RCP8.5, which simulates business as usual incrementing fossil fuel use and additionally shows an increase in atmospheric dynamism in north advections from all directions in comparison with RCP4.5. These findings point to the importance of considering the geopotential height in HW prediction, as well as the direction of advections

    Highly resolved WRF-BEP/BEM simulations over Barcelona urban area with LCZ

    Get PDF
    Unidad de excelencia María de Maeztu CEX2019-000940-MThis study evaluates the performance of urban schemes integrated in the Weather Research and Forecasting model (WRF) using Local Climate Zones (LCZ) as land use classification. We applied two multi-layer urban schemes: 1) Building Effect Parameterization (BEP) and 2) Building Energy Model coupled with BEP (BEP + BEM), over the Metropolitan Area of Barcelona (MAB) at 1km2 horizontal resolution for July 2016. These two simulations were compared with observations and a standard WRF simulation (BULK approach). Corine Land Cover 2012 provides background information for the entire simulation domain, while the LCZ covers MAB classifying the land cover into 10 classes according to urban morphology and thermal properties. BULK and multi-layer urban scheme experiments present a similar general error trend: overestimation of relative humidity and planetary boundary layer height and underestimation of temperature. Although BEP has the best correlation with observations, this is the scheme with the highest value of bias and RMSE for temperature and relative humidity, in particular during the night/morning. On the other hand, BEP + BEM performed with the minimum RMSE associated for temperature and relative humidity in the entire domain. BEP + BEM has shown to be more sensitive than the other schemes over locations where the land use in the model grid differs to the real one, which is a common consequent limitation of horizontal model resolution. This study also suggests that depending on the synoptic condition the scheme accuracy on determining PBLH might change considerably

    Closing the nutrient cycle in urban areas:The use of municipal solid waste in <i>peri</i>-urban and urban agriculture

    Get PDF
    Cities face the challenges of supplying food and managing organic municipal solid waste (OMSW) sustainably amid increasing urbanization rates. Urban agriculture (UA) can help with this effort by producing local crops that are fertilized with nutrients recovered from compost generated from OMSW. This research aims to determine the potential of OMSW compost to supply the nitrogen-phosphorus-potassium (NPK) demand of UA and the environmental benefits of replacing mineral fertilizer from a life cycle perspective. The Metropolitan Area of Barcelona (AMB) serves as the case study given its commitment to reuse biowaste according to the Revised Waste Framework Directive and to promote UA as a signing member of the Milan Urban Food Policy Pact. Based on crop requirements and farmer surveys, we find that the annual NPK demands of the agricultural fields of the AMB that cover 5,500 ha and produce 70,000 tons of crops are approximately 769, 113, and 592 tons of NPK, respectively. Spatial material flow analysis and life cycle assessment were applied to found that the current waste management system can potentially substitute 8 % of the total NPK demanded by UA with compost, reduce the impacts by up to 39 % and yield savings in global warming of 130 %. The more ambitious future scenario of 2025 can potentially substitute 21 % of the total NPK demand and reduce environmental impacts up to 1,049 %, depending on the category considered. Avoiding processing of mixed OMSW, mineral fertilizer replacement and cogeneration of electricity from biogas are the major contributors to these environmental savings.</p

    Closing the nutrient cycle in urban areas:The use of municipal solid waste in <i>peri</i>-urban and urban agriculture

    Get PDF
    Cities face the challenges of supplying food and managing organic municipal solid waste (OMSW) sustainably amid increasing urbanization rates. Urban agriculture (UA) can help with this effort by producing local crops that are fertilized with nutrients recovered from compost generated from OMSW. This research aims to determine the potential of OMSW compost to supply the nitrogen-phosphorus-potassium (NPK) demand of UA and the environmental benefits of replacing mineral fertilizer from a life cycle perspective. The Metropolitan Area of Barcelona (AMB) serves as the case study given its commitment to reuse biowaste according to the Revised Waste Framework Directive and to promote UA as a signing member of the Milan Urban Food Policy Pact. Based on crop requirements and farmer surveys, we find that the annual NPK demands of the agricultural fields of the AMB that cover 5,500 ha and produce 70,000 tons of crops are approximately 769, 113, and 592 tons of NPK, respectively. Spatial material flow analysis and life cycle assessment were applied to found that the current waste management system can potentially substitute 8 % of the total NPK demanded by UA with compost, reduce the impacts by up to 39 % and yield savings in global warming of 130 %. The more ambitious future scenario of 2025 can potentially substitute 21 % of the total NPK demand and reduce environmental impacts up to 1,049 %, depending on the category considered. Avoiding processing of mixed OMSW, mineral fertilizer replacement and cogeneration of electricity from biogas are the major contributors to these environmental savings.</p

    Literature review on the potential of urban waste for the fertilization of urban agriculture : A closer look at the metropolitan area of Barcelona

    Get PDF
    Unidad de excelencia María de Maeztu CEX2019-000940-MUrban agriculture (UA) activities are increasing in popularity and importance due to greater food demands and reductions in agricultural land, also advocating for greater local food supply and security as well as the social and community cohesion perspective. This activity also has the potential to enhance the circularity of urban flows, repurposing nutrients from waste sources, increasing their self-sufficiency, reducing nutrient loss into the environment, and avoiding environmental cost of nutrient extraction and synthetization. The present work is aimed at defining recovery technologies outlined in the literature to obtain relevant nutrients such as N and P from waste sources in urban areas. Through literature research tools, the waste sources were defined, differentiating two main groups: (1) food, organic, biowaste and (2) wastewater. Up to 7 recovery strategies were identified for food, organic, and biowaste sources, while 11 strategies were defined for wastewater, mainly focusing on the recovery of N and P, which are applicable in UA in different forms. The potential of the recovered nutrients to cover existing and prospective UA sites was further assessed for the metropolitan area of Barcelona. Nutrient recovery from current composting and anaerobic digestion of urban sourced organic matter obtained each year in the area as well as the composting of wastewater sludge, struvite precipitation and ion exchange in wastewater effluent generated yearly in existing WWTPs were assessed. The results show that the requirements for the current and prospective UA in the area can be met 2.7 to 380.2 times for P and 1.7 to 117.5 times for N depending on the recovery strategy. While the present results are promising, current perceptions, legislation and the implementation and production costs compared to existing markets do not facilitate the application of nutrient recovery strategies, although a change is expected in the near future

    More than the sum of the parts: system analysis of the usability of roofs in housing estates

    Get PDF
    Altres ajuts: Greenhouses to Reduce CO2 on Roofs (GROOF) project. Grant Numbers: UE. Interreg NWE 474, (2017-2021)Unidad de excelencia María de Maeztu CEX2019-000940-MHousing estates, that is, mass social housing on middle- and high-rise apartment blocks, in urban areas are found all over the world with very similar constructive patterns and a multiplicity of environmental and socio-economic problems. In this regard, such areas are optimal for the implementation of a roof mosaic which involves applying a combination of urban farming, solar energy, and harvesting rainwater systems (decentralized systems) on unoccupied roofs. To design sustainable and productive roof mosaic scenarios, we develop an integrated framework through a multi-scale (municipality, building, and household) and multi-dimensional analysis (environmental and socio-economic, structural, and functional) to optimize the supply of essential resources (food, energy, and water). The proposed workflow was applied to a housing estate to rehabilitate unused rooftops (66,433 m2). First, using the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism methodology, we determined metabolic rates across buildings and municipality levels, which did not vary significantly (12.60-14.50 g/h for vegetables, 0.82-1.11 MJ/h for electricity, 0.80-1.11 MJ/h for heating, and 5.62-6.59 L/h for water). Second, based on a participatory process involving stakeholders to qualitatively analyze potential scenarios further in terms of preferences, five scenarios were chosen. These rooftop scenarios were found to improve the resource self-sufficiency of housing estate residents by providing 42-53% of their vegetable consumption, 9-35% of their electricity use, and 38-200% of their water needs depending on the scenario. Boosting new urban spaces of resource production involves citizens in sites which face social and economic needs

    Sensitivity study of PBL schemes and soil initialization using the WRF-BEP-BEM model over a Mediterranean coastal city

    Get PDF
    Altres ajuts: acords transformatius de la UABUnidad de excelencia María de Maeztu CEX2019-000940-MDue to increased urbanization and global warming, cities are experiencing more heat wave (HW) events that cause extreme heat stress. To mitigate such effects, a better understanding of the impact of urban morphology on the boundary layer development is needed. This study investigates the sensitivity of mesoscale simulations using the WRF model coupled with the building effect parameterization and the building energy model (BEP-BEM) at a 1-km resolution to 1) soil moisture initializations; 2) the inclusion of site-specific urban morphology parameters; and 3) the planetary boundary layer (PBL) scheme. A HW episode that occurred in the metropolitan area of Barcelona serves as the case study. We find that the use of a high-resolution land data assimilation system (HRLDAS) to initialize soil properties results in larger temperature diurnal range, but it did not improve the performance of simulated temperatures compared to using low-resolution ERA5 data. The inclusion of site-specific urban parameters improved the representation of urban fractions, reducing the night-time overprediction of 2-m temperatures compared to using default urban parameters. Overall, the Bougeault-Lacarrere (BouLac) scheme represents the PBL-height noontime observations better than the Mellor-Yamada-Janjic (MYJ) scheme. This was related to a better representation of daytime near-surface temperatures by the BouLac scheme compared to the MYJ schem
    corecore