19 research outputs found

    OceanSITES Innovation Report

    Get PDF
    Innovation and improvement report on the extension of capabilities to measure emerging EOVs including metagenomics across different observational platforms with links to MicroB3 best practice

    Bioaccumulation and ecotoxicity of carbon nanotubes

    Get PDF
    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review indicate that CNT do not cross biological barriers readily. When internalized, only a minimal fraction of CNT translocate into organism body compartments. The reported CNT toxicity depends on exposure conditions, model organism, CNT-type, dispersion state and concentration. In the ecotoxicological tests, the aquatic organisms were generally found to be more sensitive than terrestrial organisms. Invertebrates were more sensitive than vertebrates. Single-walled CNT were found to be more toxic than double-/multi-walled CNT. Generally, the effect concentrations documented in literature were above current modeled average environmental concentrations. Measurement data are needed for estimation of environmental no-effect concentrations. Future studies with benchmark materials are needed to generate comparable results. Studies have to include better characterization of the starting materials, of the dispersions and of the biological fate, to obtain better knowledge of the exposure/effect relationships

    Drought Impact Is Alleviated in Sugar Beets (Beta vulgaris L.) by Foliar Application of Fullerenol Nanoparticles

    Get PDF
    Over the past few years, significant efforts have been made to decrease the effects of drought stress on plant productivity and quality. We propose that fullerenol nanoparticles (FNPs, molecular formula C-60(OH)(24)) may help alleviate drought stress by serving as an additional intercellular water supply. Specifically, FNPs are able to penetrate plant leaf and root tissues, where they bind water in various cell compartments. This hydroscopic activity suggests that FNPs could be beneficial in plants. The aim of the present study was to analyse the influence of FNPs on sugar beet plants exposed to drought stress. Our results indicate that intracellular water metabolism can be modified by foliar application of FNPs in drought exposed plants. Drought stress induced a significant increase in the compatible osmolyte proline in both the leaves and roots of control plants, but not in FNP treated plants. These results indicate that FNPs could act as intracellular binders of water, creating an additional water reserve, and enabling adaptation to drought stress. Moreover, analysis of plant antioxidant enzyme activities (CAT, APx and GPx), MDA and GSH content indicate that fullerenol foliar application could have some beneficial effect on alleviating oxidative effects of drought stress, depending on the concentration of nanoparticles applied. Although further studies are necessary to elucidate the biochemical impact of FNPs on plants; the present results could directly impact agricultural practice, where available water supplies are often a limiting factor in plant bioproductivity

    Aggregating spatial heterogeneity in a bush vegetation patch in semi-arid SE Spain: A multi-layer model versus a single-layer model

    No full text
    12 pages, 5 figures.-- Printed version published on Jan 2008.In semi-arid areas, where vegetation is sparse and clumped, models used to estimate evapotranspiration (λE) consider soil and plants as different sources of evaporation. When working at higher scales of heterogeneity, the modelling of surface fluxes introduces effective parameters that enclose the sub-grid heterogeneity. In this work we used both approaches to estimate the λE of a sparse-vegetation patch of Retama sphaerocarpa (L.) Boiss in a semi-arid area in southeast Spain. Firstly, we used a multi-layer model considering plant, soil under plant and bare soil, each with its own surface and aerodynamic resistances and available energy, interacting at a within canopy height. Secondly, we used a single-layer model that uses the effective surface and aerodynamic resistances of the patch, calculated by different aggregations of the soil and plant resistances considered in the multi-layer model. The estimates of λE were compared with measured values obtained by an Eddy covariance system. Results show that the use of effective surface resistances aggregated in parallel and effective aerodynamic resistances aggregated in series in a single-layer model produced similar estimates of λE as a multi-layer model. When compared to the measured values, the estimates of the single-layer model were even more accurate than the estimates of the multi-layer model. The results of this paper show that, in areas with low vegetation cover, a simple model, where patch-scale heterogeneity is solved by the use of effective aggregated resistances, is adequate to estimate the patch-scale evapotranspiration.This work received financial support from several different research projects: the PROBASE (Ref.: CGL2006-11619/HID) and CANOA (Ref.: CGL2004-04919-C02-01/HID) projects funded by the Spanish Ministry of Education and Science; and the BACAEMA (‘Balance de carbono y de agua en ecosistemas de matorral mediterráneo en Andalucía: Efecto del cambio climático’, RNM-332) and CAMBIO (’Efectos del cambio global sobre la biodiversidad y el funcionamiento ecosistémico mediante la identificación de áreas sensibles y de referencia en el SE ibérico’, RNM 1280) projects funded by the regional government Junta de Andalucía. The first author enjoyed a pre-doctoral grant from the Spanish Ministry of Science and Technology.Peer reviewe

    Vertical and lateral soil moisture patterns on a Mediterranean karst hillslope

    No full text
    The need for a better understanding of factors controlling the variability of soil water content (theta) in space and time to adequately predict the movement of water in the soil and in the interphase soil-atmosphere is widely recognised. In this paper, we analyse how soil properties, surface cover and topography influence soil moisture (theta) over karstic lithology in a sub-humid Mediterranean mountain environment. For this analysis we have used 17 months of theta measurements with a high temporal resolution from different positions on a hillslope at the main recharge area of the Campo de Dalias aquifer, in Sierra de Gador (Almeria, SE Spain). Soil properties and surface cover vary depending on the position at the hillslope, and this variability has an important effect on theta. The higher clay content towards the lower position of the hillslope explains the increase of. downslope at the subsurface horizon throughout the entire period studied. In the surface horizon (0-0.1 m), theta patterns coincide with those found at the subsurface horizon (0.1-0.35 m) during dry periods when the main control is also exerted by the higher percentage of clay that increases downslope and limits water depletion through evaporation. However, in wet periods, the wettest regime is found in the surface horizon at the upper position of the hillslope where plant cover, soil organic matter content, available water, unsaturated hydraulic conductivity (K-unsat) and infiltration rates are higher than in the lower positions. The presence of rock outcrops upslope the theta sampling area, acts as runoff sources, and subsurface flow generation between surface and subsurface horizons also may increase the differences between the upper and the lower positions of the hillslope during wet periods. Both rock and soil cracks and fissures act disconnecting surface water fluxes and reducing run-on to the lower position of the hillslope and thus they affect theta pattern as well as groundwater recharge. Understanding how terrain attributes, ground cover and soil factors interact for controlling theta pattern on karst hillslope is crucial to understand water fluxes in the vadose zone and dominant percolation mechanisms which also contribute to estimate groundwater recharge rates. Therefore, understanding of soil moisture dynamics provides very valuable information for designing rational strategies for the use and management of water resources, which is especially urgent in regions where groundwater supports human consume or key economic activities
    corecore