7 research outputs found

    Novel composite implant in craniofacial bone reconstruction

    Get PDF
    Bioactive glass (BAG) and polymethyl methacrylate (PMMA) have been used in clinical applications. Antimicrobial BAG has the ability to attach chemically to surrounding bone, but it is not possible to bend, drill or shape BAG during the operation. PMMA has advantages in terms of shaping during the operation, but it does not attach chemically to the bone and is an exothermic material. To increase the usefulness of BAG and PMMA in skull bone defect reconstructions, a new composite implant containing BAG and PMMA in craniofacial reconstructions is presented. Three patients had pre-existing large defects in the calvarial and one in the midface area. An additive manufacturing (AM) model was used preoperatively for treatment planning and custom-made implant production. The trunk of the PMMA implant was coated with BAG granules. Clinical and radiological follow-up was performed postoperatively at 1 week, and 3, 6 and 12 months, and thereafter annually up to 5 years. Computer tomography (CT) and positron emission tomography (PET-CT) were performed at 12 and 24 months postoperatively. Uneventful clinical recovery with good esthetic and functional outcome was seen. CT and PET-CT findings supported good clinical outcome. The BAG–PMMA implant seems to be a promising craniofacial reconstruction alternative. However, more clinical experience is needed

    Higher Free Fatty Acid Uptake in Visceral Than in Abdominal Subcutaneous Fat Tissue in Men

    No full text
    Visceral adipose tissue has been shown to have high lipolytic activity. The aim of this study was to examine whether free fatty acid (FFA) uptake into visceral adipose tissue is enhanced compared to abdominal subcutaneous tissue in vivo. Abdominal adipose tissue FFA uptake was measured using positron emission tomography (PET) and [F-18]-labeled 6-thia-hepta-decanoic acid ([F-18]FTHA) and fat masses using magnetic resonance imaging (MRI) in 18 healthy young adult males. We found that FFA uptake was 30% higher in visceral compared to subcutaneous adipose tissue (0.0025 +/- 0.0018 vs. 0.0020 +/- 0.0016 mu mol/g/min, P = 0.005). Visceral and subcutaneous adipose tissue FFA uptakes were strongly associated with each other (P <0.001). When tissue FFA uptake per gram of fat was multiplied by the total tissue mass, total FFA uptake was almost 1.5 times higher in abdominal subcutaneous than in visceral adipose tissue. In conclusion, we observed enhanced FFA uptake in visceral compared to abdominal subcutaneous adipose tissue and, simultaneously, these metabolic rates were strongly associated with each other. The higher total tissue FFA uptake in subcutaneous than in visceral adipose tissue indicates that although visceral fat is active in extracting FFA, its overall contribution to systemic metabolism is limited in healthy lean males. Our results indicate that subcutaneous, rather than visceral fat storage plays a more direct role in systemic FFA availability. The recognized relationship between abdominal visceral fat mass and metabolic complications may be explained by direct effects of visceral fat on the liver

    Effect of Caloric Restriction on Myocardial Fatty Acid Uptake, Left Ventricular Mass, and Cardiac Work in Obese Adults

    No full text
    Obesity is associated with increased fatty acid uptake in the myocardium, and this may have deleterious effects on cardiac function. The aim of this study was to evaluate how weight loss influences myocardial metabolism and cardiac work in obese adults. Thirty-four obese (mean body mass index 33.7 +/- 0.7 kg/m(2)) but otherwise healthy subjects consumed a very low calorie diet for 6 weeks. Cardiac substrate metabolism and work were measured before and after the diet. Myocardial fatty acid uptake was measured in 18 subjects using fluorine-18-fluoro-6-thia-heptadecanoic acid and positron emission tomography, and myocardial glucose uptake was measured in 16 subjects using fluorine-18-2-fluoro-2-deoxyglucose. Myocardial structure and cardiac function were measured using magnetic resonance imaging. Consumption of the very low calorie diet decreased weight (-11.2 +/- 0.6 kg,

    Effect of Weight Loss on Liver Free Fatty Acid Uptake and Hepatic Insulin Resistance

    No full text
    Objective: Weight loss has been shown to decrease liver fat content and whole-body insulin resistance. The current study was conducted to investigate the simultaneous effects of rapid weight reduction with a very-low-calorie diet on liver glucose and fatty acid metabolism and liver adiposity. Hypothesis: We hypothesized that liver insulin resistance and free fatty acid uptake would decrease after weight loss and that they are associated with reduction of liver fat content. Design: Thirty-four healthy obese subjects (body mass index, 33.7 +/- 8.0 kg/m(2)) were studied before and after a very-low-calorie diet for 6 wk. Hepatic glucose uptake and endogenous glucose production were measured with [18(F)] fluorodeoxyglucose during hyperinsulinemic euglycemia and fasting hepatic fatty acid uptake with [18(F)] fluoro-6-thia-heptadecanoic acid and positron emission tomography. Liver volume and fat content were measured using magnetic resonance imaging and spectroscopy. Results: Subjects lost weight (11.2 +/- 2.9 kg; P <0.0001). Liver volume decreased by 11% (P <0.002), which was partly explained by decreased liver fat content (P <0.0001). Liver free fatty acid uptake was 26% lower after weight loss (P <0.003) and correlated with the decrement in liver fat content (r = 0.54; P <0.03). Hepatic glucose uptake during insulin stimulation was unchanged, but the endogenous glucose production decreased by 40% (P <0.04), andhepatic insulin resistance by 40% (P <0.05). Conclusions: The liver responds to a 6-wk period of calorie restriction with a parallel reduction in lipid uptake and storage, accompanied by enhancement of hepatic insulin sensitivity and clearance. (J Clin Endocrinol Metab 94: 50-55, 2009

    The Pro12Ala polymorphism of the PPAR gamma 2 gene is associated with hepatic glucose uptake during hyperinsulinemia in subjects with type 2 diabetes mellitus

    No full text
    The Ala12 allele of the peroxisome proliferator-activated receptor gamma gene (PPARG2) has been associated with reduced risk of type 2 diabetes mellitus (T2DM) and increased whole-body and skeletal muscle insulin sensitivity in nondiabetic subjects. The effect of the Pro12Ala polymorphism on tissue specific insulin sensitivity in subjects with T2DM has not been previously investigated. We studied the effect of the Pro12Ala polymorphism on the rates of whole-body, skeletal muscle, and subcutaneous adipose tissue glucose uptake (GU) in T2DM subjects, and the rates of hepatic GU in nondiabetic and T2DM subjects during hyperinsulinemia. Our study included 105 T2DM subjects whose whole-body, skeletal muscle, subcutaneous adipose tissue, and hepatic GUs were measured using F-18-fluorodeoxyglucose and positron emission tomography during the hyperinsulinemic euglycemic clamp. Hepatic GU was also measured in 68 nondiabetic subjects. In obese (body mass index >= 27 kg/m(2)) subjects with T2DM, the rate of hepatic GU was 28% lower in subjects with the Pro12Pro genotype than in carriers of the Ala12 allele (P = .001); and a similar trend was observed in nondiabetic obese subjects (P = .137). No effect of the Pro12Ala polymorphism on the rates of whole-body, skeletal muscle, or subcutaneous adipose tissue GU was observed in T2DM subjects. We conclude that the Ala12 allele of PPARG2 is associated with higher hepatic GU in obese subjects with T2DM. (C) 2009 Elsevier Inc. All rights reserved
    corecore