51 research outputs found

    The global transformation of geomorphology

    Get PDF
    This chapter reviews the various developments in geomorphology in terms of institutions, journals, textbooks, research stations, etc. Among the institutions discussed are the Binghamton Geomorphology Symposium, the Geological Society of America Quaternary Geology and Geomorphology Division, the Association of American Geographers Geomorphology Specialty Group, the British Geomorphological Research Group, the IGU Commission on Measurements, Theory and Application in Geomorphology (COMTAG), the International Association of Geomorphologists, the European Geosciences Union (EGU), the American Geophysical Union (AGU), the International Quaternary Association, and the International Conference on Aeolian Research. Many countries established their own national bodies. A number of new journals appeared, including Catena, Earth Surface Processes and Landforms, Géomorphologie, and Geomorphology. In addition, during the closing decades of the twentieth century there was a proliferation of textbooks in geomorphology. One development was that geomorphological research was promoted by the establishment of research stations. These permitted long-term monitoring and provided bases for sustained investigations. The study of fluvial processes was much encouraged in the United States at USDA Forest Service research basins (known as ‘watersheds’ in the USA) such as the Hubbard Brook Experimental Forest (New Hampshire), Coweeta Hydrologic Laboratory (North Carolina) and the H.J. Andrews Experimental Forest (Oregon). The Royal Geographical Society (with the Institute of British Geographers) organized ambitious research projects in collaboration with host nations. Various US government departments supported much geomorphological research in various parts of the world. Some European countries fostered overseas geomorphological research and created missions. Notable was the work of ORSTOM (Office de la Recherche Scientifique et Technique Outre-mer) in former francophone colonies. In the post-war years, and as independence approached and then occurred, new universities were established in Africa. These employed expatriate geomorphologists and also trained up a new generation of indigenous scholars. The decades since the 1960s have been a period of space exploration and the development of remote sensing. This has had important implications for geomorphology. The period also saw the onset of the digital age and the beginning of the World Wide Web's influence on teaching and research. Applied research became increasingly important. A major cause for international and cross-disciplinary co-operation during the period was the emergence of geoarchaeology. Finally, since the 1950s, an increasing number of women have made important contributions to the discipline

    The spatial organization and microbial community structure of an epilithic biofilm.

    Get PDF
    Microbial biofilms are common on lithic surfaces, including stone buildings. However, the ecology of these communities is poorly understood. Few studies have focused on the spatial characteristics of lithobiontic biofilms, despite the fact that spatial structure has been demonstrated to influence ecosystem function (and hence biodegradation) and community diversity. Furthermore, relatively few studies have utilized molecular techniques to characterize these communities, even though molecular methods have revealed unexpected microbial diversity in other habitats. This study investigated (1) the spatial structure and (2) the taxonomic composition of an epilithic biofilm using molecular techniques, namely amplicon pyrosequencing and terminal restriction fragment length polymorphism. Dispersion indices and Mantel correlograms were used to test for the presence of spatial structure in the biofilm. Diversity metrics and rank-abundance distributions (RADs) were also generated. The study revealed spatial structure on a centimetre scale in eukaryotic microbes (fungi and algae), but not the bacteria. Fungal and bacterial communities were highly diverse; algal communities much less so. The RADs were characterized by a distinctive 'hollow' (concave up) profile and long tails of rare taxa. These findings have implications for understanding the ecology of epilithic biofilms and the spatial heterogeneity of stone biodeterioration.This work was supported by the Engineering and Physical Sciences Research Council (grant no. EP/G011338/1).This is the author accepted manuscript. The final version is available from OUP at http://femsec.oxfordjournals.org/content/91/3/fiu027

    The Influence of the Type of Lime on the Hygric Behaviour and Bio-Receptivity of Hemp Lime Composites Used for Rendering Applications in Sustainable New Construction and Repair Works

    Get PDF
    The benefits of using sustainable building materials are linked not only to the adoption of manufacturing processes that entail reduced pollution, CO2 emissions and energy consumption, but also to the onset of improved performance in the building. In particular, hemp-lime composite shows low shrinkage and high thermal and acoustic insulating properties. However, this material also shows a great ability to absorb water, an aspect that can turn out to be negative for the long-term durability of the building. For this reason, the hygric properties of hemp-based composites need to be studied to ensure the correct use of this material in construction and repair works. The water absorption, drying and transpirability of hemp composites made with aerial (in the form of dry powder and putty) and hydraulic limes were investigated here and related to the microbial growth induced by the water movements within the material. Results show that hemp-natural hydraulic lime mixes exhibit the highest transpirability and drying rate, the lowest water absorption by immersion and capillary uptake and the least intense microbial attack and chromatic change. A microscopical study of the hemp shives also related their great ability to absorb water to the near-irreversible swelling of their structure under dry-wet conditions.The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 326983 (NaturALiMe), and the Spanish project MAT-2012-34473 of the Ministerio de Ciencia y Competitividad. Author MB, owner of the CANNABRIC company, had some role in the design and preparation of mortar samples and in the preparation of this manuscript, but did not have any additional role in data collection and analysis

    小惑星表面でのレゴリス形成

    No full text

    The Effects of Air Pollution on the Built Environment

    No full text

    What controls algal greening of sandstone heritage? An experimental approach

    No full text
    Recent observations have shown that many sandstone buildings, including important components of the UK’s cultural heritage, are becoming covered with green algal growths. This is likely to result from recent changes in air quality and the impacts of a changing climate. The northern regions of the UK in particular have an abundance of sandstone heritage and, given the likelihood of warmer, wetter winters here, algal growth on vulnerable monuments is likely to become a primary conservation concern over the next 50 years. Observations of sandstone monuments in the northern regions of the UK, in particular in Belfast (Northern Ireland), Sheffield and Edinburgh have highlighted that algal greening is notably patchy. This is likely due to the array of factors which affect the bioreceptivity of host substrates such as sandstone. The bioreceptivity of a substrate (its ability to become colonised by microbes such as green algae) is dependent on inherent, external and architectural factors. The role of these factors and the interrelationships between them requires further study. This thesis aims to investigate the inherent, external and architectural factors which encourage colonisation of sandstone by green algae through an integrated programme of laboratory and field experimentation. The primary objectives of this study are: to develop improved laboratory experimental methods to control and monitor algal growth, to investigate the role of external, inherent and architectural factors and to explore the fundamental role of moisture in the development of algal greening. In order to address these objectives, laboratory and field experiments have been linked within an integrated overall methodology. Short-term laboratory experiments have investigated the bioreceptivity of four British sandstones (Peak Moor, Dungannon, St Bees and ‘baluster stone’) to single and mixed green algal treatment with Stichococcus bacillaris, Chlorella vulgaris and Desmococcus olivaceus, under controlled conditions. Two field experiments have also been conducted. The first exposed unweathered blocks of Dungannon sandstone in the wet environment of Derrygonnelly, Northern Ireland for 30 months. The second exposed reclaimed sandstone balusters in a shaded and exposed site in central Oxford for 12 months. The laboratory and field experiments presented utlilise a range of simple and accessible methods to monitor biofilm development (for example novel methods to map biomass) and changes in substrate condition (such as monitoring surface moisture movements with weight change and hand-held moisture meters, and using light microscopy to help visualise the impact of green algal biofilms). The results presented in this thesis confirm that moisture plays a fundamental role in the development of green algal biofilms. In laboratory experiments, colonisation often occurred within a consistent moisture zone and preferential greening in field experiments was observed in areas of frequent moisture movement. External factors have been shown to have a strong influence, in laboratory experiments where marine salts were applied, these were found to delay colonisation by around seven days. Furthermore, salts resulted in inhomogeneous patterns of colonisation, similar to those observed in scoping studies conducted in Sheffield. Laboratory experiments have also demonstrated that inherent substrate factors such as high porosity and presence of certain minerals (such as clay laminations in Dungannon) can increase the primary bioreceptivity of sandstone surfaces. Field experiments have demonstrated that architectural factors such as aspect and geometry can increase the bioreceptivity of exposed samples. In particular, preferential greening was observed on the dynamically wetted south west facing blocks in Derrygonnelly and on exposed compared with shaded balusters in Oxford. Greening was also concentrated in areas of rainwater flows and stores. Investigation of the role of external, inherent and architectural factors in the development of algal greening as provided by this project, supplies useful information for those managing our sandstone cultural heritage. This will enable more informed decisions to be made over appropriate management and conservation strategies for the future

    Editorial

    No full text
    corecore