670 research outputs found

    Statistical modeling of interfractional tissue deformation and its application in radiation therapy planning

    Get PDF
    In radiation therapy, interfraction organ motion introduces a level of geometric uncertainty into the planning process. Plans, which are typically based upon a single instance of anatomy, must be robust against daily anatomical variations. For this problem, a model of the magnitude, direction, and likelihood of deformation is useful. In this thesis, principal component analysis (PCA) is used to statistically model the 3D organ motion for 19 prostate cancer patients, each with 8-13 fractional computed tomography (CT) images. Deformable image registration and the resultant displacement vector fields (DVFs) are used to quantify the interfraction systematic and random motion. By applying the PCA technique to the random DVFs, principal modes of random tissue deformation were determined for each patient, and a method for sampling synthetic random DVFs was developed. The PCA model was then extended to describe the principal modes of systematic and random organ motion for the population of patients. A leave-one-out study tested both the systematic and random motion model’s ability to represent PCA training set DVFs. The random and systematic DVF PCA models allowed the reconstruction of these data with absolute mean errors between 0.5-0.9 mm and 1-2 mm, respectively. To the best of the author’s knowledge, this study is the first successful effort to build a fully 3D statistical PCA model of systematic tissue deformation in a population of patients. By sampling synthetic systematic and random errors, organ occupancy maps were created for bony and prostate-centroid patient setup processes. By thresholding these maps, PCA-based planning target volume (PTV) was created and tested against conventional margin recipes (van Herk for bony alignment and 5 mm fixed [3 mm posterior] margin for centroid alignment) in a virtual clinical trial for low-risk prostate cancer. Deformably accumulated delivered dose served as a surrogate for clinical outcome. For the bony landmark setup subtrial, the PCA PTV significantly (p30, D20, and D5 to bladder and D50 to rectum, while increasing rectal D20 and D5. For the centroid-aligned setup, the PCA PTV significantly reduced all bladder DVH metrics and trended to lower rectal toxicity metrics. All PTVs covered the prostate with the prescription dose

    Single-cycle viral gene expression, rather than progressive replication and oncolysis, is required for VSV therapy of B16 melanoma

    Get PDF
    A fully intact immune system would be expected to hinder the efficacy of oncolytic virotherapy by inhibiting viral replication. Simultaneously, however, it may also enhance antitumor therapy through initiation of proinflammatory, antiviral cytokine responses at the tumor site. The aim of this study was to investigate the role of a fully intact immune system on the antitumor efficacy of an oncolytic virus. In this respect, injection of oncolytic vesicular stomatitis virus (VSV) into subcutaneous B16ova melanomas in C57Bl/6 mice leads to tumor regression, but it is not associated with viral replicative burst in the tumor. In contrast, intratumoral delivery of VSV induces an acute proinflammatory reaction, which quickly resolves concomitantly with virus clearance. Consistent with the hypothesis that therapy may not be dependent on the ability of VSV to undergo progressive rounds of replication, a single-cycle VSV is equally effective as a fully replication-competent VSV, whereas inactivated viruses do not generate therapy. Even though therapy is dependent on host CD8+ and natural killer cells, these effects are not associated with interferon-γ-dependent responses against either the virus or tumor. There is, however, a strong correlation between viral gene expression, induction of proinflammatory reaction in the tumor and in vivo therapy. Overall, our results suggest that acute innate antiviral immune response, which rapidly clears VSV from B16ova tumors, is associated with the therapy observed in this model. Therefore, the antiviral immune response to an oncolytic virus mediates an intricate balance between safety, restriction of oncolysis and, potentially, significant immune-mediated antitumor therapy

    Interfacing single-atom catalysis with continuous-flow organic electrosynthesis

    Get PDF
    The global warming crisis has sparked a series of environmentally cautious trends in chemistry, allowing us to rethink the way we conduct our synthesis, and to incorporate more earth-abundant materials in our catalyst design. “Single-atom catalysis” has recently appeared on the catalytic spectrum, and has truly merged the benefits that homogeneous and heterogeneous analogues have to offer. Further still, the possibility to activate these catalysts by means of a suitable electric potential could pave the way for a true integration of diverse synthetic methodologies and renewable electricity. Despite their esteemed benefits, single-atom electrocatalysts are still limited to the energy sector (hydrogen evolution reaction, oxygen reduction, etc.) and numerous examples in the literature still invoke the use of precious metals (Pd, Pt, Ir, etc.). Additionally, batch electroreactors are employed, which limit the intensification of such processes. It is of paramount importance that the field continues to grow in a more sustainable direction, seeking new ventures into the space of organic electrosynthesis and flow electroreactor technologies. In this piece, we discuss some of the progress being made with earth abundant homogeneous and heterogeneous electrocatalysts and flow electrochemistry, within the context of organic electrosynthesis, and highlight the prospects of alternatively utilizing single-atom catalysts for such applications

    Diverse immunotherapies can effectively treat syngeneic brainstem tumors in the absence of overt toxicity

    Get PDF
    Background: Immunotherapy has shown remarkable clinical promise in the treatment of various types of cancers. However, clinical benefits derive from a highly inflammatory mechanism of action. This presents unique challenges for use in pediatric brainstem tumors including diffuse intrinsic pontine glioma (DIPG), since treatment-related inflammation could cause catastrophic toxicity. Therefore, the goal of this study was to investigate whether inflammatory, immune-based therapies are likely to be too dangerous to pursue for the treatment of pediatric brainstem tumors. Methods: To complement previous immunotherapy studies using patient-derived xenografts in immunodeficient mice, we developed fully immunocompetent models of immunotherapy using transplantable, syngeneic tumors. These four models – HSVtk/GCV suicide gene immunotherapy, oncolytic viroimmunotherapy, adoptive T cell transfer, and CAR T cell therapy – have been optimized to treat tumors outside of the CNS and induce a broad spectrum of inflammatory profiles, maximizing the chances of observing brainstem toxicity. Results: All four models achieved anti-tumor efficacy in the absence of toxicity, with the exception of recombinant vaccinia virus expressing GMCSF, which demonstrated inflammatory toxicity. Histology, imaging, and flow cytometry confirmed the presence of brainstem inflammation in all models. Where used, the addition of immune checkpoint blockade did not introduce toxicity. Conclusions: It remains imperative to regard the brainstem with caution for immunotherapeutic intervention. Nonetheless, we show that further careful development of immunotherapies for pediatric brainstem tumors is warranted to harness the potential potency of anti-tumor immune responses, despite their possible toxicity within this anatomically sensitive location

    Combination therapy with reovirus and anti-PD-1 blockade controls tumor growth through innate and adaptive immune responses.

    Get PDF
    Oncolytic reovirus can be delivered both systemically and intratumorally, in both pre-clinical models and in early phase clinical trials. Reovirus has direct oncolytic activity against a variety of tumor types and anti-tumor activity is directly associated with immune activation by virus replication in tumors. Immune mechanisms of therapy include both innate immune activation against virally infected tumor cells, and the generation of adaptive anti-tumor immune responses as a result of in vivo priming against tumor-associated antigens. We tested the combination of local oncolytic reovirus therapy with systemic immune checkpoint inhibition. We show that treatment of subcutaneous B16 melanomas with a combination of intravenous (i.v.) anti-PD-1 antibody and intratumoral (i.t.) reovirus significantly enhanced survival of mice compared to i.t. reovirus (p<0.01) or anti-PD-1 therapy alone. In vitro immune analysis demonstrated that checkpoint inhibition improved the ability of NK cells to kill reovirus-infected tumor cells, reduced Treg activity, and increased the adaptive CD8(+) T cell dependent anti-tumor T cell response. PD-1 blockade also enhanced the anti-viral immune response but through effector mechanisms which overlapped with, but also differed from those affecting the antitumor response. Therefore, combination with checkpoint inhibition represents a readily translatable next step in the clinical development of reovirus

    Ecological restoration of rich fens in Europe and North America: from trial and error to an evidence-based approach

    Get PDF
    Fens represent a large array of ecosystem services, including the highest biodiversity found among wetlands, hydrological services, water purification and carbon sequestration. Land use change and strong drainage has severely damaged or annihilated these services in many parts of North America and Europe, which urges the need of restoration plans at the landscape level. We review the major constraints for the restoration of rich fens and fen water bodies in agricultural areas in Europe and disturbed landscapes in North America: 1) habitat quality problems: drought, eutrophication, acidification, and toxicity, 2) recolonization problems: species pools, ecosystem fragmentation and connectivity, genetic variability, invasive species, and provide possible solutions. We discuss both positive and negative consequences of restoration measures, and their causes. The restoration of wetland ecosystem functioning and services has, for a long time, been based on a trial and error approach. By presenting research and practice on the restoration of rich fen ecosystems within agricultural areas, we demonstrate the importance of biogeochemical and ecological knowledge at different spatial scales for the management and restoration of biodiversity, water quality, carbon sequestration and other ecosystem services, especially in a changing climate. We define target processes that enable scientists, nature managers, water managers and policy makers to choose between different measures and to predict restoration prospects for different types of deteriorated fens and their starting conditions

    Experimental nitrogen addition alters structure and function of a boreal poor fen: Implications for critical loads

    Get PDF
    Bogs and fens cover 6 and 21%, respectively, of the 140,329 km2 Oil Sands Administrative Area in northern Alberta. Regional background atmospheric N deposition is low (b2 kg N ha−1 yr−1 ), but oil sands development has led to increasing N deposition (as high as 17 kg N ha−1 yr−1 ). To examine responses to N deposition, over five years, we experimentally applied N (as NH4NO3) to a poor fen near Mariana Lake, Alberta, unaffected by oil sands activities, at rates of 0, 5, 10, 15, 20, and 25 kg N ha−1 yr−1 , plus controls (no water or N addition). At Mariana Lake Poor Fen (MLPF), increasing N addition: 1) progressively inhibited N2-fixation; 2) had no effect on net primary production (NPP) of Sphagnum fuscum or S. angustifolium, while stimulating S. magellanicum NPP; 3) led to decreased abundance of S. fuscum and increased abundance of S. angustifolium, S. magellanicum, Andromeda polifolia, Vaccinium oxycoccos, and of vascular plants in general; 4) led to an increase in stem N concentrations in S. angustifolium and S. magellanicum, and an increase in leaf N concentrations in Chamaedaphne calyculata, Andromeda polifolia, and Vaccinium oxycoccos; 5) stimulated root biomass and production;6) stimulated decomposition of cellulose, but not of Sphagnum or vascular plant litter; and 7) had no or minimal effects on net N mineralization in surface peat, NH4 +-N, NO3 −-N or DON concentrations in surface porewater, or peat microbial composition. Increasing N addition led to a switch from new N inputs being taken up primarily by Sphagnum to being taken up primarily by shrubs. MLPF responses to increasing N addition did not exhibit threshold triggers, but rather began as soon as N additions increased. Considering all responses to N addition, we recommend a critical load for poor fens in Alberta of 3 kg N ha−1 yr−1
    corecore