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In radiation therapy, interfraction organ motion introduces a level of geometric 

uncertainty into the planning process.  Plans, which are typically based upon a single 

instance of anatomy, must be robust against daily anatomical variations.  For this 

problem, a model of the magnitude, direction, and likelihood of deformation is useful.  In 

this thesis, principal component analysis (PCA) is used to statistically model the 3D 

organ motion for 19 prostate cancer patients, each with 8-13 fractional computed 

tomography (CT) images.  Deformable image registration and the resultant 

displacement vector fields (DVFs) are used to quantify the interfraction systematic and 

random motion.  By applying the PCA technique to the random DVFs, principal modes 

of random tissue deformation were determined for each patient, and a method for 

sampling synthetic random DVFs was developed. 



 

The PCA model was then extended to describe the principal modes of systematic 

and random organ motion for the population of patients.  A leave-one-out study tested 

both the systematic and random motion model’s ability to represent PCA training set 

DVFs.  The random and systematic DVF PCA models allowed the reconstruction of 

these data with absolute mean errors between 0.5-0.9 mm and 1-2 mm, respectively.  

To the best of the author’s knowledge, this study is the first successful effort to build a 

fully 3D statistical PCA model of systematic tissue deformation in a population of 

patients. 

By sampling synthetic systematic and random errors, organ occupancy maps 

were created for bony and prostate-centroid patient setup processes.  By thresholding 

these maps, PCA-based planning target volume (PTV) was created and tested against 

conventional margin recipes (van Herk for bony alignment and 5 mm fixed [3 mm 

posterior] margin for centroid alignment) in a virtual clinical trial for low-risk prostate 

cancer.  Deformably accumulated delivered dose served as a surrogate for clinical 

outcome.  For the bony landmark setup subtrial, the PCA PTV significantly (p<0.05) 

reduced D30, D20, and D5 to bladder and D50 to rectum, while increasing rectal D20 and 

D5.  For the centroid-aligned setup, the PCA PTV significantly reduced all bladder DVH 

metrics and trended to lower rectal toxicity metrics.  All PTVs covered the prostate with 

the prescription dose. 
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1. Introduction 

The goal of fractionated definitive radiotherapy is to deliver a sufficient dose to kill 

all cancerous tumor cells while minimizing the risk of toxicity to the surrounding healthy 

tissue.  Both cancerous and healthy tissues exhibit day-to-day variations in organ 

position, shape, and volume.  These changes in 3D anatomy (referred to collectively as 

organ motion in this thesis) can be classified as either intra- or interfraction motions.  

Intrafraction motion is the change in anatomy over the course of a single daily 

treatment.  Interfraction motion is the change in anatomy from day to day.  The latter 

issue will be the focus of this thesis.   

Anatomical motion and deformation introduces geometric uncertainty into the 

radiation therapy planning process.  Conventional planning involves acquiring a 3D 

computed tomography (CT) image of the patient to plan a radiation treatment.  This CT 

image only captures a “snapshot” of the patient, or how the anatomy looks at a 

particular moment in time.  Plans based on these snapshots have the potential to be 

suboptimal for treatment as any organ motion that occurs subsequent to treatment 

planning can result in target miss and/or healthy tissue overdose.   

Ideally, online planning would be used for all radiation therapy treatments.  

Online planning involves imaging the patient in the treatment position prior to each 

fraction. While the patient is waiting, the relevant anatomy would be contoured and a 

plan of the day developed and delivered based on this current anatomical instance.  

Assuming the patient remained stationary during this process, online adaptive radiation 
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therapy would eliminate any errors introduced by interfraction motion.  Although 

intrafraction motion would not be accounted for, online adaptive radiation therapy would 

be extremely useful in sites where interfraction motion dominates organ motion, such as 

the prostate and cervix.1-3  This could also be helpful in sites such as head and neck, 

where there exists a temporal dependence of interfraction motion due to patient weight 

loss and tumor regression.4-7  In prostate radiation therapy, Ghilezan8 showed that 

idealized daily online planning provided, on average, a 13% increase in the therapeutic 

ratio.  Therapeutic ratio is the ratio of tumor control to radiation-induced normal tissue 

toxicity.  Ghilezan defined therapeutic ratio as the maximum generalized equivalent 

uniform dose (gEUD) to the prostate without exceeding specified organ at risk (OAR) 

toxicity quantified in terms of gEUD.  For prostate treatment, the dose-limiting organ 

was found to be the rectum.  Additionally, the individual benefit in therapeutic ratio 

varied widely (SD=9.7%) from patient to patient.  Still, approximately one-third of the 

patients in the Ghilezan study benefited from online adaptive planning, with therapeutic 

ratio increases of at least 15%.8   

However, such idealized online planning has a number of drawbacks, including 

the amount of time needed to create the daily plan.  The patient must be imaged, the 

target and avoidance structures delineated, and an optimized plan created, all with the 

patient remaining in the treatment position.  This lengthy process can lead to 

unacceptable patient discomfort and may seriously hinder patient throughput in the 

clinic.  For these reasons, online planning is currently impractical for daily patient care.  

While improvements are being made to hasten the online planning process,9-11 

alternative methods for accounting for anatomical uncertainty must be utilized.   
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Recent advances in in-room imaging systems, such as cone beam CT (CBCT) 

and CT-on-rails, have improved target localization in radiation therapy.12,13  Imaging 

immediately before and during treatment is becoming routine and reduces patient setup 

errors.  These images are used to rigidly align the patient’s treatment anatomy with his 

or her planning anatomy by means of couch shifts and can be based on bony anatomy, 

soft tissue landmarks, or implanted markers within the tumor.  While such deterministic 

corrections can improve the therapeutic ratio, they cannot account for all sources of 

anatomical uncertainty.14  One common deterministic correction currently practiced is 

online setup to radio opaque fiducial markers implanted directly into the prostate. 

However, not all impacts of organ motion and tissue deformation can be fully accounted 

for using translational and rotational alignment, e.g., deformations of the CTV and 

changes in shape and relative position of OARs.  These residual uncertainties must be 

accounted for by other means.  Generally, this is accomplished by creating an initial 

treatment plan that is designed to be robust against daily variations in the patient’s 

anatomy.   

To create such a plan, some form of probabilistic treatment planning (PTP) is 

usually used.  PTP is the process of maximizing the likelihood that treatment objectives 

are met in situations of anatomical uncertainty.  A simple and nearly universally used 

PTP approach is the use of a margin.  The International Commission of Radiation Units 

and Measurement (ICRU) Report 50 has defined several concepts relevant to 

margins,15 the first of which is gross tumor volume (GTV).  The GTV is the extent of 

malignancy that can be determined through physical examination, imaging, or a 

combination of the two.  The CTV is the GTV plus any presumed microscopic extension 
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of the disease.  In addition to the GTV, the treatment plan must include the CTV, as the 

CTV is presumed to contain malignant cells.  In practice, this is determined by 

measuring the GTV and expanding the volume with a margin or to adjacent anatomical 

boundaries that delimit the potential spread of subclinical disease.  The final volume is 

the ICRU 50 defined planning target volume (PTV).  The PTV is a geometrical concept 

that is used to account for possible geometric uncertainties, including patient setup 

errors, beam setup errors, and organ movement and deformation.  The PTV is generally 

taken as an expansion of the CTV using some margin that is determined to ensure 

adequate coverage of the CTV, in the event of anatomical motion.   

The use of a margin to create the PTV represents a tradeoff between target 

coverage and normal tissue toxicity.  The expansion must be large enough so the PTV 

encompasses the expected range of daily anatomic presentations.  A larger margin will 

ensure the plan is more robust against tumor miss, but it may subject larger volumes of 

the OARs to unnecessarily large doses, thereby reducing the therapeutic ratio.  

Different strategies have been proposed to estimate the optimal margin, using 

knowledge of the underlying organ motion to create a PTV that encompasses a large 

percentage of possible daily anatomies.  These margin calculations are statistical in 

nature, meant to ensure a high probability of target coverage.  For this reason, this 

thesis considers margin-based planning to be the simplest of PTP techniques.  Several 

of these strategies will be discussed later in this chapter. 

More advanced PTP methods directly incorporate probabilistic criteria into the 

planning process.  Unlike traditional objective functions, which optimize on dose criteria 

for both the PTV and OARs, PTP optimizes on the likelihood of these criteria being met 
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in the presence of organ motion.  All PTP methods require a statistical organ motion 

model.  A PTP method is only as good as its underlying assumption of the magnitude, 

direction, and likelihood of different daily anatomical configurations.  The goal of this 

thesis is to develop a 3D statistical model that includes both OARs and CTVs. 

Modeling—specifically, statistical modeling of the patient’s anatomical changes—

is the most effective strategy for accounting for those errors for which deterministic 

correction is not technically feasible or cost effective.  A model of anatomical motion, as 

the term is used in this thesis, is a statistical measure of the probability of a given 

anatomical instance over the course of radiation therapy.  Here, an anatomical instance 

is represented by a voxel-by-voxel mapping between the planning anatomy and the 

daily treatment anatomy.  This mapping is characterized by a displacement vector field 

(DVF), a general measure of organ motion.  A model gives the probability of all possible 

deformed states, as described by DVFs and can provide valuable information to the 

planning process when the treatment-day anatomy cannot be easily known.  This 

information can be directly incorporated into the planning process. 

Statistical motion models can be used for any treatment site where there is organ 

motion.  Hereafter, “organ motion” will refer to any displacement or deformation 

between the patient’s treatment day anatomy and his or her planning anatomy.  The 

work presented in this thesis is mainly focused on the development of a new model and 

its potential clinical applications.  The focus is on the anatomy critical to the treatment of 

low-risk prostate cancer, specifically, the prostate, bladder, and the rectum.  This three-

organ system in the male pelvis was chosen for several reasons.  These organs move 

relative to bony anatomy, their movement is correlated with bladder and rectal filling,16,17 
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and the intrafraction motion is smaller in relation to the interfraction motion.  Britton et al. 

reported the mean interfractional motion of an implanted fiducial to be 1.76, 3.14, and 

3.78 mm in the left-right, superior-inferior, and anterior-posterior directions, respectively.  

This compares to the measured intrafraction motion of 0.45, 1.08, and 1.45 mm.2  Su et 

al. separated the inter- and intrafractional motion into its systematic and random 

components.  Their results are shown in Table 1.1  

Table 1:  Comparison of the inter- and intrafraction motion of the prostate as measured by Su et 
al.1   

  LR SI AP 

Interfraction 
Systematic Error (mm) 2.3 3.4 4.7 

Random Error (mm) 3.7 2.7 3.5 

Intrafraction 
Systematic Error (mm) 0.3 0.5 0.6 

Random Error (mm) 0.7 1.4 1.9 

Abbreviations:  LR=left/right.  SI=superior/inferior.  AP=anterior/posterior. 

 

Additionally, the treatment target (the whole prostate) has a stable (±10%) volume over 

the treatment course.17  This reduces the possibility of any time trend in the anatomy 

over the course of treatment, removing an unnecessary extra layer of complexity to any 

modeling attempt. 

This work is intended to show the clinical benefit of incorporating statistical 

motion modeling of the prostate, bladder, and rectum into the treatment planning 

process.  This could be extended to high-risk prostate cancer patients by including 

seminal vesicles and pelvic lymph nodes in the model.  Results from this work could 

also directly benefit intermediate and high-risk prostate cancer patients, as a prostate-
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only boost is a very common part of their treatment.  This work could also be adapted 

for use in focal radiation therapy.  The model could be used to identify the daily 

locations of subregions of the prostate containing a higher concentration of malignant 

cells.  This region could then be boosted to a higher dose, with the model being used to 

ensure coverage.  This model could also be extended to different treatment sites, such 

as head and neck, and pancreas. 

1.1. External beam radiation therapy of prostate cancer 

Currently, there are a number of treatment options for patients diagnosed with 

prostate cancer.  Some of the most common include watchful waiting, radical 

prostatectomy, low dose rate brachytherapy (permanent seed implant), and external 

beam radiation therapy (EBRT), or some combination thereof.  The choice and 

effectiveness of these options are highly dependent on the tumor’s T-stage and 

biological aggressiveness (conventionally measured by Gleason score and 

pretreatment prostate-specific antigen [PSA] level).  Broadly, the National 

Comprehensive Cancer Network (NCCN) classifies prostate cancer into low, 

intermediate, and high risk.18  In both low and intermediate risk prostate cancer, the 

disease must be clinically staged as prostate-confined.  A tumor falls into the high-risk 

category if it invades adjacent structures such as the seminal vesicles and pelvic lymph 

nodes.  However, very high Gleason score (>7) or pretreatment PSA with clinical 

evidence of spread outside the prostate can also qualify the patient for high-risk status.   

As this thesis is focused on low-risk prostate cancer, discussion will be limited to 

the current interventions and their outcomes in this context.  Currently, radical 

prostatectomy, brachytherapy, and EBRT all have very favorable control rates.  Ten-
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year follow-ups after 3D conformal radiation therapy (CRT) EBRT showed a 93% rate of 

freedom from biochemical failure (bNED).19  Memorial Sloan Kettering has shown that 

by using intensity-modulated radiation therapy (IMRT) to deliver a highly conformal 

escalated dose (86.4 Gy), seven-year bNED rates for low-risk prostate cancer were as 

high as 99%.20  A separate study showed comparable results between 3D CRT EBRT 

and radical prostatectomy.21  Seven- and 10-year studies for brachytherapy have shown 

a 95% and 94.1% biochemical relapse-free survival, respectively.22,23  

While each modality exhibits excellent control rates, each option has drawbacks 

and associated side effects.  Not all patients are candidates for radical prostatectomy or 

brachytherapy, as both procedures are invasive.  Both procedures are also dependent 

on the skill of the surgeon.  EBRT is noninvasive and less dependent on physician skill.  

All procedures are associated with varying degrees of short- and long-term difficulties in 

urinary and sexual function.24-26   

For EBRT, one study of 151 patients treated to 78 Gy reported grade 2 or higher 

bladder toxicities of 10% and grade 2 or higher rectal toxicities of 26%.27  Arguably, 

EBRT has the largest potential to improve toxicity rates by limiting the dose to 

surrounding OARs.  In a literature review, Staffurth reported that by using the more 

conformal approach of IMRT instead of 3D CRT, grade ≥2 gastrointestinal toxicities 

were reduced to from 20% in 3D CRT to 6% using IMRT.28  In the same review, it was 

noted that there were no significant differences in genitourinary toxicity between 3D 

CRT (median incidence of 18%) and IMRT (median incidence of 21%).  This suggests 

that there is still a need for more optimal treatment that can help spare the bladder. 
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Combining highly conformal dose delivery with better knowledge of the target 

location has the potential to further reduce toxicity.  Anatomical uncertainty requires the 

plan to target a larger volume, increasing the bladder and rectum volumes that receive 

the full prescription dose.  One hypothesis of this thesis is that a completely 3D 

statistical model of this three-organ system to accommodate targeting uncertainty due 

to residual organ motion not controlled by a daily deterministic IGRT correction will 

reduce OAR doses needed without comprising target coverage. 

1.2. Previous work on statistical management of anatomical uncertainty 

In this thesis, targeting error is defined as the linear difference between 

corresponding anatomical locations in the patient’s planning anatomy at the time of 

simulation and the patient’s anatomy at the time of treatment.  This error arises from 

various sources, including setup errors, organ displacement, and organ/soft tissue 

deformation.  Setup errors are any errors introduced by suboptimal patient positioning in 

the treatment room.  Patient positioning can be done in several ways.  Traditionally, 

patients have been positioned on the treatment table by aligning skin tattoos with in-

room lasers in conjunction with initial and weekly port films or x-rays.  With the 

widespread use of in-room imaging, further target alignment has become quite 

common.  To align on bony landmarks, x-ray projections or CBCT are used to image the 

patient, and the bones are then used to reposition the patient to match the planning 

image.  This is fairly straightforward as the skeletal structure of the patient does not 

greatly change from day to day.  In prostate cancer, is also common to align on radio 

opaque fiducial markers implanted directly into the prostate.  In-room x-rays are then 
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taken to align the patient based on these intraprostatic markers.  This technique not 

only attempts to partly correct for setup errors, but also organ displacements. 

Translational corrections are made to account for both setup errors (errors due to 

setup alone) and organ motion.  Both tattoo and bony alignment assume that the 

patient’s soft tissue is fixed in relation to the skin and bones.  This is not the case, as 

differences have been found between tattoo (with weekly portal image verification) and 

bony alignment setups.29  There have also been reported differences between bony and 

marker based setup.30-32  Fiducial marker setup has the advantage of aligning to a point 

within the target (prostate) that is to be treated, correcting for more organ motion than a 

bony-aligned setup.  Marker-based setup has some associated uncertainty: Changes in 

inter-marker distances on the order of 1.5 mm due to prostate deformation and seed 

migration have been reported.33,34  Studies have shown differences in the prostate 

surface of over 1 mm even after post marker alignment.35,36  A fiducial alignment also 

does not account for motion in the volumes surrounding the prostate,37 such as the 

OARs.  Nearly all online setup techniques use a translation-only strategy, ignoring 

rotations and deformation.  None of these methods can fully account for daily organ 

motion.  Therefore, strategies to account for the residual error must be incorporated into 

the planning. 

In prostate cancer, the most common approach for managing residual anatomical 

uncertainty is the use of a PTV margin.  Since the introduction of PTVs, different 

formulas for their associated margins have been proposed.  For prostate treatment, the 

two most well-known formulas are those constructed by Stroom38 and van Herk.39  Both 

divide the targeting error they are accounting for into systematic and random 
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components.  Systematic error is the displacement relating the patient’s planning 

anatomy to the patient’s mean anatomy.  Random error is the daily residual 

displacement around the systematic error.  Each type of error has a different effect on 

the delivered dose distribution.  Random errors are less worrisome when compared to 

systematic, as they create a blurring of the dose distribution and tend to “wash out” over 

the course of many fractions.40  Systematic errors are more serious, as they manifest as 

shifts in the cumulative dose distribution.41  Both Stroom and van Herk formulas are 

based on statistical models and are designed to meet certain CTV coverage criteria 

over the course of treatment. 

Both formulas are designed to use the statistical motion characteristics of a 

population of similar patients.  The population statistics used in their organ motion 

modeling were the standard deviation of the systematic error distribution,  , and that of 

the random error distribution,  .  In order to calculate these population statistics, 

Stroom and van Herk assumed any targeting error can be described by one systematic 

error and one random error.  Also assumed is that the prostate is a rigid body that can 

only translate, ignoring deformation. 

Both formulas were built to probabilistically ensure dose coverage.  Stroom 

designed his margin to ensure at least 95% of the prescribed dose is delivered to an 

average of 99% of the CTV for a prostate, cervix, and lung clinical plan.  To accomplish 

this, target coverage probability is computed using the inputs   and  .  This calculation 

is then coupled with an actual 3D CRT dose distribution (for prostate, the 3 field box 

technique is used) to meet the stated criteria.  This method includes translational and 

rotational errors.  The van Herk method was aimed at providing a minimum of 95% of 
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the prescribed dose to the entire CTV for 90% of patients.  To account for systematic 

errors, this method uses purely coverage-based criteria, ignoring the dose distribution.  

The dose distribution is taken into account for random errors, where a conformal dose 

distribution with a 3.2 mm beam penumbra is assumed in the commonly used 

formulation.  This method includes translational errors only. 

Both formulas take into account setup error as well as rigid tumor motion.  For 

example, in the prostate, a bony-aligned setup would include the systematic and 

random errors of the alignment as well as the systematic and random errors of the 

prostate’s movement in relation to the bony anatomy.  As alignment to intraprostatic 

fiducial markers becomes more popular, these formulas lose value.  The systematic and 

random errors become zero as the markers are assumed to move rigidly with the rest of 

the prostate.  In these instances, there is still a need for a margin to account for the 

deformations and rotations of the prostate. 

Alternative methods have been reported that account for the residual anatomical 

uncertainty after deterministic corrections.  Such methods incorporate the use of image-

guided adaptive radiation therapy (IGART).  IGART uses data from patient images to 

adapt the original treatment plan based on anatomical characteristics of the specific 

individual.  A well-documented clinical variation of IGART is Beaumont-style adaptive 

radiation therapy (ART), hereafter referred to as “Beaumont ART.”  This method, 

developed by Yan et al., estimates the patient-specific systematic error and random 

error distribution,  , based on a limited number of fractions, k , usually taken to be 5 

days.42,43  In their method, CT simulations are taken during the first k  days of treatment, 

with the CTV contoured on all images.  The images are then aligned on bony anatomy, 
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and a convex hull is created from the union of these contours.  This structure is referred 

to as the  PTVo k , and compensates for internal target motion.  During the same time, 

in-room projections are taken directly prior to treatment and compared to digitally 

reconstructed radiographs (DRRs) to find the rigid shifts of bony anatomy.  From these 

projections, systematic and random error distributions are determined as the average 

and standard deviation of the shifts, respectively, using a Kalman prediction method to 

estimate the true values from the measurements.  The setup position is then modified to 

account for the systematic error, while a margin is added to  PTVo k  to compensate for 

the random errors.  The  PTVo k  plus the margin is referred to as the clinical PTV, or 

cl-PTV.  The patient is then replanned and treated based on the derived cl-PTV.  

Beaumont ART has been shown to give a maximum dose reduction of 2% or less to the 

CTV for at least 80% of patients in IMRT cases.42  This means that dose coverage to 

the CTV is not compromised by planning using the cl-PTV derived from a small subset 

of measurements taken in the first week of treatment.   

Beaumont ART uses the relatively simple idea of a convex hull in order to model 

the possible prostate deformations specific to an individual patient.  This method takes 

into account some of the possible deformations of the prostate, but fails to account for 

the surrounding organs at risk, such as the bladder and rectum.  In addition, Beaumont 

ART gives no guidance on how to plan and treat the patient during the data 

accumulation period.  It also relies on estimating a PTV from a limited dataset.  Due to 

the small statistical sample size (5 days of images), additional estimation of the residual 

anatomical uncertainty is needed.  Beaumont ART provides little information on how the 

prostate deforms and no information on the deformations of any OARs.  A completely 
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3D statistical model of the male pelvis would provide such information.  Incorporating 

knowledge of OAR motion, target coverage, and critical structure avoidance could 

improve the therapeutic ratio.   

1.3. Deformable image registration (DIR) 

The most complete, currently available characterization of organ motion between 

two anatomic states of a given patient is deformable image registration (DIR).  DIR 

computes the transformation that maps points in a source image to their corresponding 

voxels in the target image.  The resultant DVF quantifies the net displacement of a 

tissue subvolume during the time interval between acquisitions of the two images.  As 

multiple images are acquired over the course of treatment, each new image can be 

registered to a common image.  This produces multiple measurements of the patient’s 

interfraction motion.  With enough samples, these DVFs can be used to look for 

possible patterns in tissue motion over the entire 3D volume contained in the images. 

Fundamentally, DIR is an optimization problem.  The underlying objective 

function that drives the registration ultimately determines the resultant transformation.  

DIR generally tries to determine the transformation that minimizes the intensity 

differences between the two input images, but often includes other criteria to ensure a 

realistic correspondence between the two images.  Such criteria include regularization, 

which can ensure a smooth and realistic image.  In the end, any useful data derived 

from deformable image registration are only as reliable as the DIR algorithm’s ability to 

characterize the underlying anatomical motion.   
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1.4. Principal components analysis (PCA) 

Extracting useful information from a collection of DVFs is a difficult task.  Each 

DVF is a data structure that can store 3D displacements of millions of voxels.  The data 

associated with these voxels are often highly correlated, however.  The trajectory of a 

given voxel over the course of treatment is likely to be similar to its neighboring voxels.  

This correlation can be exploited using principal component analysis (PCA) in an 

attempt to reduce the high dimensionality of the problem.  PCA is the 

eigendecomposition of the covariance matrix of the data.  Each element of the 

covariance matrix represents the covariance between two voxels, a measure of how 

these variables change together.  PCA is the eigendecomposition of this matrix, the 

mathematical equivalent of a coordinate system transformation.  The output is a basis 

set of orthogonal eigenmodes.  The first eigenmode, or most principal component, is the 

basis vector on which one can project the greatest amount of variance in the data.  The 

second-most principal component is the orthogonal vector that can account for the most 

amount of residual variance in the data, and so on.  Each eigenmode has a 

corresponding eigenvalue.  The eigenvalues are measures of how much variance in the 

data is represented by its associated eigenmode.  Eigenmodes that represent little 

variance (generally all those totaling <10%) in the original data can then be discarded, 

further reducing the dimensionality.  These eigenmodes are assumed to represent small 

and unlikely modes of motion or possible noise in the data.   

The resultant eigenmodes are a basis set for the PCA input data, meaning the 

input data can be represented as a linear combination of these eigenmodes multiplied 

by some scaling coefficient.  As the eigenmodes are orthogonal, the distributions of their 
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associated scaling coefficients are linearly independent from one another.  For the input 

data, the distribution of these coefficients is related to a normal distribution with a 

standard deviation equal to the eigenvalue associated with the eigenmode.  In the 

context of anatomical motion, the principal components are DVF-like structures that 

represent the most likely independent patterns of motion in our dataset.  Assuming the 

initial dataset adequately represents the patient’s underlying physical motion, PCA also 

has the ability to represent future deformations in the patient that are not included in the 

initial training set.  This process is as simple as finding the corresponding scaling 

coefficients for each eigenmode.  These coefficients are calculated as the dot product of 

the eigenmode and the original data.   

In this work, the potential value in PCA lies with its ability to break down male 

pelvic motion into the underlying dominant modes of motion.  PCA also computes the 

likelihood of a given deformation as the likelihood of selecting the associated scaling 

coefficients.  These measures of the magnitude, direction, and probability of motion can 

be directly incorporated into the planning process.  Larger margins can be implemented 

in areas with high likelihood of large target deformation or displacement, and greater 

efforts can be made to spare areas more likely to be occupied by deformed instances of 

OARs.  This knowledge could be used to optimize outcomes for individual patients and 

for the patient population as a whole. 

Previously, PCA characterizations of organ motion and anatomical changes have 

been used to analyze and help diagnose diseases ranging from scoliosis to 

Alzheimer’s.44,45  Less work has been done to explore the motion of the pelvic anatomy 

in the treatment of prostate cancer.  One work of note is the detailed statistical analysis 
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done by Sohn.46  In this work, PCA was used to statistically model the surface 

deformations of the three-organ system of the prostate, bladder, and rectum.  For four 

separate patients, the organ shapes were deformably registered to the average organ 

system shape, and the principal eigenmodes of deformation were calculated, related to 

the major geometrical modes of variation.  The authors found that a patient’s organ 

shapes could be reconstructed to within 1.3–2.0 mm using four principal modes.  Their 

results are of limited value to IGART applications, as they represent only surfaces of the 

three organs mentioned.  The rest of the anatomy (both inside and outside of the three 

organs) was not modeled in their study.  In addition, their analysis was patient-specific, 

and they found no correlation between modes between patients.  Patient-specific 

models have been proposed in other sites, most notably lung.47,48  In such models of the 

prostate, numerous images are needed over the course of two or three weeks to fully 

characterize the patient specific motion.  Any intervention in treatment could only be 

done after this initial data collection period. 

This data collection problem is addressed by Budiarto et al.49  Although only 

dealing with the shape of the prostate and seminal vesicles, a PCA technique was 

outlined to incorporate population data into the analysis.  Since systematic organ motion 

error is unique for each patient’s treatment, population data is necessary in order to 

model the distribution of systematic errors across a group of patients.  Using 18 

patients, each with four DVFs, to build their training dataset, Budiarto et al. were able to 

reconstruct the deformations of three patients not included in the training set, with the 

prostate and seminal vesicle boundary displacements accurate to within 1.5 mm using 

15 eigenmodes.  Budiarto et al.’s study was limited to modeling the surfaces of the 



 

18 
 

prostate and seminal vesicles.  Ideally, a description of the anatomy as a whole is 

desirable.  This is especially important in prostate cancer, as the bladder and rectum 

have greater magnitudes of deformation than the prostate.  In the follow-up paper, this 

population model was used to investigate the dosimetric effect of random errors.50  For 

a single prostate case, they calculated the mean and standard deviation of the dose to 

the prostate and seminal vesicles in the presence of random deformation errors.  This 

work was very limited in clinical usefulness, however.  They admittedly ignored any 

systematic deformation errors and their effect on the dose.  Additionally, their analysis 

used a single beam and incorporated only the single most dominant mode of motion 

(representing only 34.7% of the whole spectrum energy).  Their method for calculating 

the mean and standard deviation of the dose was quite computationally expensive, 

possibly limiting its direct use in the plan optimization process. 

A population model for the entire 3D pelvic anatomy, and not just one with limited 

organ shapes, would be of great benefit.  The model could be incorporated into the 

radiation therapy treatment planning process in a number of ways.  For example, if the 

model predicted a large probability of organ motion in a certain direction but very little in 

another, the model could be used to create anisotropic margins that better spared 

normal tissue and ensured greater coverage of the prostate.  Anatomical motion 

statistics could also be incorporated into PTP.  This process would use the population 

model of the anatomical uncertainty to create a plan that maximizes the probability of 

realizing tumor coverage and other treatment goals.  The model would be based on 

population data and would require no extra information of a patient other than his 

planning CT. 
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The potential danger of a population model is that it might not benefit every 

patient.  By definition, the goal of a population model in this context is to describe the 

anatomical motion for most patients; however, patients with abnormal organ motion may 

have their tumors underdosed while patients with little organ motion may have the 

normal surrounding tissue unnecessarily overdosed.  This may be resolved in an 

adaptive strategy, using a patient-specific model, to replan the patient treatment as 

more individual data (e.g., daily CBCT images) are gathered. 

1.5. Novel research contributions and acknowledgements 

The general goal of this thesis is to develop a process for statistically modeling 

3D systematic and random tissue deformation that could, in principle, be applied to any 

treatment site.  The independent contributions of the writer (Douglas J. Vile) are as 

follows.  I, Douglas, have implemented a working tool for modeling both individual and 

population organ motion, as characterized using DVFs.  This included creating a 

detailed mathematical description of these models and creating a Matlab-based 

computer code to implement the models.  In this process, I determined a solution to the 

problem of performing organ specific deformable registrations from one patient to 

another, as well as developing DVF stitching techniques to be used in this work.  These 

inter-patient registrations were used in solving the problem of transporting patient 

specific statistics to a reference anatomy.  I am responsible for all evaluation of the 

models developed in this thesis.   

With the models in place, I proposed and implemented two virtual clinical trials 

(VCTs) in order to demonstrate clinical utility.  This was done in the context of radiation 

therapy for low-risk prostate cancer.  I also worked with Huijun Xu in order to implement 



 

20 
 

patient-specific statistical modeling within the probabilistic treatment planning framework 

of coverage optimized planning.   

To my knowledge, this thesis presents the most complete statistical modeling of the 

pelvic anatomy for patients undergoing definitive radiation therapy for prostate cancer.  

This work includes the statistical modeling of individual patients as well as for a 

population of patients, and is the first to report a fully 3D representation of systematic 

and random error distributions of the pelvic organ motion.  A novel method for creating 

treatment planning margins is developed that is based on the population statistical 

model. 

The work in this thesis is the realization of project first proposed by Drs. Jeffrey 

Williamson, Martin Murphy, and Ramesh Ramakrishnan in a Program Project Grant 

application last submitted to the NIH (P01CA116602) in 2006. That application 

introduced the concept of using PCA to model statistical fluctuations of organ motion 

through PCA modeling of DVFs describing both random and systematic organ motion.  

Specifically, this work stems from Project 1 (Deformable Image Registration and 

Reconstruction), Project 3 (Image-guided IMRT and Brachytherapy for Pelvic Tumors), 

and Core B (Administration, Biostatistics, and Outcomes Modeling) of that research 

grant.51-53  The author of this thesis gratefully acknowledges the guidance and 

intellectual input received from Drs. Murphy, Christensen, and Williamson during the 

course of this project.  In addition, the author would like to thank Dr. Chet ford, who 

computed many of the DVFs on which this work is based upon.  Much gratitude is 

expressed to the NKI for providing the CT images used in this thesis, to Dr. Jeffrey 

Seibers for their processing, and to Dr. Elisabeth Weiss for contouring the images.  The 
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work in this thesis could not have been possible without use of research computing 

framework (RCF) tools developed at VCU and their authors.  This work specifically uses 

the DVF generator, image and contour warping, and biological dose accumulator tools.  

The author would also like to thank Ford Sleeman and Dr. Mirek Fatyga for their help 

using these tools.  Finally, the author would like to thank Dr. Nitai Mukhopadhyay of the 

VCU Department of Biostatistics for his guidance on statistical methods utilized in this 

work. 

1.6. Research aims and organization  

Chapter 2 outlines the process through which I built a statistical PCA model using 

a series of collected images for an individual patient.  The dataset and methods used in 

this entire research are described in depth.  Efforts to validate the method are 

presented, verifying that the PCA model accurately describes the underlying patient 

anatomy.  Potential uses and applications of an individual model are also discussed. 

Because little patient-specific data is available at the beginning of treatment, 

there is not enough statistical power to create a patient-specific model.  In Chapter 3, I 

address this issue by describing the construction of a population model for the male 

pelvic organ motion.  The need for a common coordinate system in which to model the 

anatomy is presented in detail.  Any modeling errors were quantified as an assessment 

of its potential use.  The constructed model was used to calculate and compare   and 

  between two different patient setups.  A bony alignment patient setup and a 

simulated fiducial marker setup was compared.  Organ occupancy diagrams were also 

calculated and compared for the two setups.  This chapter is structured to align with a 
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manuscript that is to be submitted for publication.  This manuscript is included in 

Appendix B. 

With the population model in place for both a bony and simulated fiducial-based 

patient setup, an example of incorporating it into the treatment planning process is 

outlined in Chapter 4.  This straightforward method involved using the occupancy 

diagrams created in Chapter 3 to calculate an anisotropic margin for use in the planning 

process.  This planning method was directly compared against current planning 

techniques using the virtual clinical trial (VCT) framework.  The VCT framework allowed 

for the comparison of two planning techniques on the same patient data.  Dose volume 

histogram (DVH) metrics were used for the comparison of physical dose.   

In Chapter 5, I discuss the limitations and the potential future uses of the 

methods described in this thesis.  Topics include the potential adaptive planning 

process by individualizing the patient treatment as well as extensions of the 

methodology to other sites.  This work is supplemented by two appendices.  Appendix A 

outlines the mathematical formalism of the PCA technique.  Appendix B includes the 

manuscript on the construction and validation of the population model. 
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2. 3D systematic and random targeting error and statistical modeling  
of patient-specific anatomical deformations 

2.1. Introduction 

The anatomy of a single prostate cancer patient is never the same from 

treatment day to treatment day.  The bladder and rectum fill and empty, pressing on the 

surrounding organs, causing shape deformation and displacement.  For the 

displacement, a simple rigid shift of the patient’s treatment position can prove to be a 

beneficial correction strategy.54,55  However, no rigid shift will be able to account 

completely for deformation.  Ideally, online replanning would be used to create a plan 

specifically for that day’s anatomy.  First, the patient would be set up in the treatment 

position.  An onboard 3D image would be acquired, with contouring of all organs used in 

the planning process.  Finally, a treatment plan would be created for this specific 

anatomical instance.  A prospective virtual study has shown a theoretical increase to the 

therapeutic ratio of 13%.8  This would account for interfractional organ displacement 

and deformation, but not intrafractional motion. 

For several reasons, online planning is not practical in reality.  The biggest 

hindrance is the time necessary to image, contour, and replan.  Each of these steps 

usually requires its own specialist to complete.  The physicist or therapist is responsible 

for the imaging, the physician for the contouring, the dosimetrist for the planning, and 

the physician and physicist for quality assurance (QA) checks.  This workflow under the 

time constraint of the patient on the table is not currently feasible.  Current techniques, 

such as those reported by Wu, involve modifying the workflow of online adaptive 
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planning.  In Wu’s method, a CBCT image of the patient in the treatment position is 

acquired and DIR is performed to map this treatment image to the patient’s planning 

image.  The resultant transformation is then used to deform the dose distribution from 

the original plan; the deformed dose becomes the “goal” of a new plan.  Re-optimization 

is performed in order to determine the fluence map that gives the goal dose.  Wu 

reported the time needed for the optimization process to be 2 minutes.11  While 

promising, this process is still quite lengthy, and the poor quality of CBCT images could 

cause the DIR to give a suboptimal registration.  Deterministic corrections are much 

more practical, such as repositioning the patient to align the treatment isocenter.  This 

strategy still leaves some residual deformation of the organs unaccounted for,9,10 which 

was investigated in this study.  Thus, there is a need to create an initial plan robust 

against anatomical uncertainties. 

Probabilistic treatment planning (PTP) is the process by which one tries to 

maximize the probability of specific treatment objectives in the face of a patient’s 

unknown daily anatomy to ensure that the treatment objectives are met for a large 

percentage of the daily anatomical realizations.  These treatment objectives vary greatly 

in complexity.  The simplest objective (and the one most commonly used) is an 

expansion of the CTV by a margin to create the PTV, which ensures that most 

anatomical deviations from the planning image will still be confined to this volume.  

More advanced methods, such as coverage optimized planning first presented by 

Gordon, incorporate the dose coverage probability in the face of organ motion directly 

into the optimization process.56   
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While both of these methods are built to withstand unknown day-to-day variations 

in patient anatomy, both require knowledge of the uncertainty associated with the 

patient’s underlying organ motion.  For this reason, there is value in a patient-specific 

model of anatomical deformations.  A 3D statistical motion model of the patient allows 

these probabilistic methods to create a plan robust against realistic organ motion as 

opposed to the simplistic translational estimates currently used.  The uncertainty in the 

patient’s anatomy can be analyzed, and if there are certain deformations that are more 

likely, this knowledge can be used to create a plan that is robust even with the 

anatomical uncertainty.   

In this chapter, patient-specific statistical motion models are created using 

principal components analysis.  The PCA technique has been used previously to model 

the organs of the pelvis, most notably in the work of Sohn.46  In their work, PCA was 

used to model the shapes of the prostate, bladder, and rectum.  Four eigenmodes were 

found to be sufficient to describe each of their four patient’s daily organ shapes to within 

2 mm.  While this work laid the framework for individual modeling using PCA, it was 

limited in its applications.  Their PCA models were limited to the organ shapes, ignoring 

the daily anatomical changes within and outside of the three organs analyzed.  In this 

thesis, PCA will be used to develop models for all of the patient’s anatomy using DIR of 

a series of fan-beam CT images.   

2.1.1. Systematic and random errors 

In this work, a patient-specific model was created by partitioning daily anatomical 

differences into systematic and random components.  These components are defined 

and discussed in the context of what is define as “traditional radiotherapy” in this thesis.  
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In traditional radiotherapy, a patient comes in for a pretreatment CT.  This image is then 

used to create a desirable treatment plan that is to be used for the entirety of the 

patient’s treatment regimen.  Thus, this image is called the planning image.  This 

planning image only represents one of the many possible anatomical instances of this 

patient.  In a worst-case scenario, this anatomy can represent an unlikely instance of 

the patient’s possible anatomies, and thus introduce a systematic difference between 

the dose intended to be delivered and the dose actually delivered.  For this treatment 

methodology, one hopes that the planning image represents the patient’s average 

anatomy.  In this work, systematic error was defined as the difference between the 

patient’s planning anatomy and the patient’s mean anatomy, averaged over the course 

of treatment.  A simple 1D example of systematic error is shown graphically below in 

Figure 1.   



 

27 
 

 

Figure 1.  1D example of systematic error.  The points represent the patient’s treatment isocenter 
on each day, k.  The blue line is the patient’s average treatment position over the course of 
therapy.  The orange line is the systematic error, or the difference between the planning isocenter 
and the mean isocenter position. 

 
Determining and planning on the patient’s mean anatomy does not eliminate 

anatomical errors by itself.  The daily fluctuations between the mean anatomy and the 

daily anatomy will also alter the delivered dose distribution.  These residual differences 

are known as the patient’s random error.  The sum of the systematic and random error 

equal the displacement of the patient’s planning anatomy from the patient’s anatomy at 

the time of treatment.  Therefore, there is a single, constant systematic error for each 

patient and a different random component for each treatment day.  These errors are 

defined more rigorously in the following sections. 
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2.2. Creating the patient-specific model 

In this section, the patient dataset used throughout this thesis is outlined, as well 

as an overview of the deformable image registration (DIR) algorithm used.  The 

concepts of systematic and random error are mathematically defined, and a principal 

component analysis technique is applied to the data to create a patient-specific 3D 

statistical model. 

2.2.1. Patient dataset 

The patient dataset used in this thesis consisted of a set of serial anonymized fan 

beam CT images, , ( )i kI x , of the male pelvis for patients undergoing definitive EBRT for 

prostate cancer.  These images were obtained from the Netherlands Cancer Institute 

(NKI), where , ( )i kI x  is the image intensity at voxel x of the CT of the ith patient acquired 

at his kth fraction.  Each of the 19N   patients ( 1, ,i N  ) had planning (k=0) and 

8, ,13iP    (median 11) fractional images ( 1, , ik P   ) acquired throughout the course 

of treatment.  There were 210 fractional images used in this study.  On each of these 

images, the prostate, bladder, and rectum were contoured by a single experienced 

radiation oncologist.  The images were initially rigidly aligned on bony anatomy.  The 

cutoff for the superior boundary of the rectum was the inferior edge of the iliosacral 

joints.  Patients were instructed to evacuate their bladder and rectum one hour prior to 

treatment.  Afterwards, they were told to drink 250 mL of water.  The staging of the 

patients and other details of treatment are given by Deurloo.57 
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2.2.2. Deformable image registration 

To quantify the differences between the anatomy of the day and the planning 

anatomy, DIR was used.  DIR is the process of determining the mapping of each voxel 

in one image (the fixed image) to its corresponding location in another image (the 

moving image).  These mappings are represented by vectors anchored at the voxel 

centers of the fixed image.  These vectors “point” to the corresponding location in the 

moving image.  For each patient in this dataset, the Eulerian transformation, 

     ,0, ,0 ii k ih x , was defined as 

            ,0 ,0 ,0, ,0 , ,0i i ii k i i k i  h x x u x   (1) 

Here,      ,0, ,0 ii k iu x  is the DVF that associated with      ,0, ,0 ii k ih x  and ,0ix  is the 

planning image coordinate system for the patient.  The transformation maps the spatial 

locations, ,0ix  in the patient’s planning image, ,0( )iI x , to the corresponding location, ,i kx , 

in his treatment position image, ,( )i kI x .   

In this work, the small deformation, inverse consistent, linear elastic (SICLE) DIR 

algorithm was used in order to compute the transformation.  Details about this algorithm 

have been published.58  SICLE calculated the initial set of DVFs used in this work using 

both grayscale and contour information.  SICLE’s objective function contains intensity 

matching, inverse consistency, and regularizing terms.  The intensity matching was 

done by minimizing the sum of squares differences of CT intensities and contour 

information.  Contours were incorporated by converting each one to a binary mask 

image.  The optimization was simultaneously done on these binary mask images as well 

as on the grayscale CT images.  The contours used in these studies were the prostate, 
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bladder, and rectum.  The algorithm simultaneously searches for both forward, 

     ,0, ,0 ii k ih x , and inverse,      ,k,0 ,k ii ig x , DVFs relating the two input images and their 

associated contour masks.  The objective function contained terms penalizing inverse 

inconsistent registrations.  Finally, a linear elastic regularizing term was also included in 

the objective function.  The transformation was parameterized using a Fourier basis, 

with the Fourier basis coefficients representing the transform parameters being actively 

optimized.  The algorithm utilized a multi-resolution approach, first by minimizing the 

objective function on a course image grid and then by iteratively refining the Fourier 

coefficients on a finer resolution.  The final DVFs spanned the whole image with voxel 

sizes of approximately 1.8x1.8x0.3 mm.   

2.2.3. Construction of the patient-specific PCA model 

A patient-specific statistical model gives the magnitude, direction, and likelihood 

of a given deformation between the patient’s anatomy at the time of planning and the 

anatomy at the time of treatment.  As each model described the organ motion for a 

particular patient, one model was constructed to describe the anatomical motion of each 

patient, i , in the dataset.  To build the models, CT images from different days were 

deformably registered to their planning image.  As each daily image was registered to 

the same planning image, each DVF shared the domain of the planning image, ,0ix .  

Together, the DVFs represented repeated measurements of how the anatomy in the 

planning image moved from day to day.  From these DVFs, a systematic error DVF 

could be easily computed for the ith patient as 

        ,0 ,0, ,0
1

1 iP

i i ii k i
kiP 


 u x u x   (2) 
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for patient i  with NP  fractional images.  The random error component for each fraction 

could then be found as the residual error after correcting for the systematic error 

              ,0 ,0 ,0, ,0 , ,0i i i ii k i i k i  Δu x u x u x   (3) 

Since the systematic error was constant for the duration of treatment, an 

individual patient deformation model, hereafter referred to as the individual model, was 

based solely on random error displacement.  This work used principal component 

analysis to create a patient’s individual model.  For a more technical description of PCA, 

please refer to Appendix A.  The covariance matrix used as input to the PCA was 

constructed as follows 

                   ,0 ,0 ,0, ,0 , ,0 , ,0
1

1
cov

iP
T

i i i ii k i i k i i k i
kiP  


  C Δu x Δu x Δu x   (4) 

PCA is the eigendecomposition of this covariance matrix, which determines the linearly 

independent orthonormal eigenvectors, ,i lv , and eigenvalues, ,i l , that satisfy the 

following equation 

 , , ,i i l i l i lC v v   (5) 

The eigenvalues represented the fraction of the variability in the data 

corresponding to its associated eigenvector.  The eigenvalues were sorted, with the 

largest one associated with the most principal component, ,1iv , the second highest with 

the second most principal component, ,2iv , and so forth.  The first L  eigenvectors were 

kept.  The principal components formed an orthogonal basis, which could be used to 

reconstruct the original SICLE DVF 

        ,0 , , ,0, ,0
1

L

i i l i l i ii k i
l

c


 u x v u x   (6) 
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where ,i lc  were scaling coefficients calculated by 

      , ,0 ,, ,0i l i i li k ic  Δu x v   (7) 

2.2.4. Kernel density estimation 

The eigenvectors resulting from the PCA were linearly independent of one 

another.  This means that the probability of a given deformation was the same as the 

probability of randomly sampling the associated set of expansion coefficients to be used 

in conjunction with equation (24) in Appendix A.  Selecting appropriate expansion 

coefficients maintained the spatial correlation between the voxels while possibly 

reducing the dimensionality, if certain eigenvectors added little to describing the 

variance in the data.  For these reasons, it was desirable to be able to randomly sample 

these expansion coefficients from a probability density function (PDF).  Following the 

method of Murphy et al.,59 the calculation of these PDFs was determined using kernel 

density estimation (KDE), also called Parzen windowing.60,61  In the end, there was one 

PDF associated with each eigenvector.   

Practically, this was done by creating a histogram of the training coefficients, ,
k
i lc , 

associated with each eigenvector, 1 il L  .  In order to represent 100% of the variance 

in the daily deformations, 1iL P  .  The training coefficients were the expansion 

coefficients needed to represent the SICLE generated DVFs as a linear combination of 

the eigenmodes, ,i lv .  Each of the daily random errors could be reconstructed using the 

patient’s systematic error, a set of iL  eigenvectors, and their associated expansion 

coefficients.  The coefficients were calculated using equation (25) in Appendix A.   
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The expansion coefficients were found for each fractional DVF and eigenmode, l , 

creating a matrix of coefficients for each patient, i .   

 

1
,1 ,1 ,1

1
, , ,

1
, , ,

i

i

i

i i i

Pk
i i i

Pk
i l i l i li

Pk
i L i L i L

c c c

c c c

c c c

 
 
 
 
 
 
 
 

c

 
    

 
    

 

  (8) 

The columns of the coefficient matrix, ic , represent the coefficients needed to 

reconstruct the fractional DVFs.  The rows represent the coefficients corresponding to a 

particular eigenmode.   

PDFs were calculated for each eigenmode, each using the coefficients in the 

corresponding row of ic .  In this study, a continuous Gaussian kernel was used for the 

KDE, which centered a Gaussian around each coefficient for a given eigenmode.  The 

resultant PDF was then constructed as the superposition of these Gaussians.  The 

mathematical formulation is given in Equation (9) for the l th eigenvector 

    2

,

, 22
1

1
exp

22

i
kP
i l

i l
ki

c c
p c

bP b 

   
 
 

   (9) 

where b  is a user-adjustable bandwidth parameter.  This parameter adjusts the width of 

the Gaussian kernel used.  In this work, the parameter was calculated from a heuristic 

rule of thumb put forth by Silverman62: 

  1
51.06 datab N SD


   (10) 
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where dataSD is the standard deviation of the training coefficients ( 1
,i lc  - ,

iP
i lc ) associated 

with a particular eigenmode, l .  Using this method, one PDF was generated for each of 

the iL  principal components. 

2.2.5. Sampling coefficients from the KDE-generated PDFs 

For patient-specific random error uncertainty, sampling the expansion coefficient 

PDFs allowed for the creation of “synthetic DVFs,”      ,0,syn ,0 ii iu x , by inserting sampled 

coefficients, ,
syn
i lc , into the following equation:  

        ,0 , , ,0,syn ,0
1

iL
syn

i i l i l i ii i
l

c


 u x v u x   (11) 

The synthetic DVFs were statistically consistent with those in the training set, 

meaning that there should have been no significant difference in the spread of the 

training set vectors and the corresponding synthetic ones.  To sample each PDF, a 

rejection sampling technique was implemented in this research.  The tails of the PDFs 

were nonzero and extended to infinity.  Because of this range, the tails were cut off to 

improve the sampling efficiency.  The cutoff was made to meet the requirement that the 

function at this point was at least 0.0001 of the maximum value.  

2.2.6. Evaluation of the patient-specific PCA model 

As an initial evaluation of the patient-specific model, the original SICLE DVFs 

were reconstructed as linear combinations of eigenmodes and expansion coefficients.  

More rigorously, the statistical correlation of synthetic DVFs output from the patient-

specific PCA model with the training DVFs were confirmed.  Specifically, in this section I 

compare the distribution of voxel vectors in the training set to those synthetically 
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created.  Hypothesis testing was performed to determine any significant difference 

between the distributions. 

2.2.6.1. Evaluation of the patient-specific PCA model’s ability to reconstruct 
training DVFs 

PCA allows one to represent the original SICLE DVFs,      ,0, ,0 ii k iu x , as a linear 

combination of eigenmodes and scalar expansion coefficients.  If no eigenmodes are 

discarded ( 1i iL P  ), the PCA model should reconstruct the training data perfectly 

using equations (6) and (7).  This is the simplest check that the eigenvectors and 

expansion coefficients are being calculated correctly.  Performing this test with all 

fractional DVFs for all patients, PCA was able to reconstruct each DVF perfectly. 

2.2.6.2. Direct evaluation of individual model on voxel vectors 

The evaluation above indicates that the individual patient statistical PCA method 

was correctly calculating the eigenvectors and expansion coefficients.  This check, while 

important, does not test the KDE or PDF sampling of the PDFs.  The general flow of the 

evaluation used to check the entire modeling process is given in Figure 2.  In this 

methodology, 1000 synthetic DVFs were created using equation (11).  At this point, the 

1000 vector values were extracted from each voxel located within the prostate, bladder, 

and rectum contours as defined on the planning image.  The 11-13 corresponding 

vector values from these same voxels were then extracted from the original SICLE 

calculated DVFs.  Finally, differences in the distributions of the synthetic and calculated 

vector values were tested against the null hypothesis (p<0.05 criteria used) at each 

organ occupied voxel.  The Wilcoxon rank-sum test was used for the hypothesis testing.  
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Figure 2:  Flowchart for the evaluation of the individual PCA model.  This flowchart was used for 
all patients; it extracted the vector values at voxels within the organs of interest (prostate, 
bladder, and rectum) to be compared with those of those in the SICLE generated DVFs. 

 

For all patients, there were no significant differences in the vector distributions for 

any voxels within each patient’s planning regions of interest.  A histogram of all of the 

p-values for all voxels in the patient population is given in Figure 3.  This result was to 

be expected, as the PCA model was designed to recreate the distributions of the data 
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used in the input.  Although the PCA model has the ability to create unique synthetic 

deformations, these deformations are probabilistically tied to the distribution of the 

underlying measured data. 

 

 

Figure 3:  Histogram of p-values from hypothesis testing (Wilcoxon rank-sum test) of the synthetic 
and true voxel vector distributions.  No differences were found to be significant, with the minimum 
p-value equal to 0.36.   

 

For illustrative purposes, the displacement for a single voxel (located centrally 

within the prostate) was investigated in one patient.  The voxel center (in ,0ix ) was 

displaced with the SICLE DVFs,      ,0, ,0 ii k iu x , creating a distribution of points.  These 

points are the locations of that piece of tissue on each training image.  The voxel center 
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in the planning image was similarly displaced with 1000 synthetically sampled DVFs, 

     ,0,syn ,0 ii iu x , from the individual PCA model, creating its own distribution of locations 

of this voxel.  A 3D scatter plot of the displaced voxel location is shown in Figure 4.  

Assuming the individual PCA model was correctly implemented, these two distributions 

should be identical.  The distribution means and standard deviations of the two 

distributions, as well as the p-values, are given in Table 2.  The results show no 

significant differences in the distributions. 

 

Figure 4:  3D distribution of a central prostate point location after being displaced with the training 
SICLE DVFs (red) and sampled synthetic DVFs (blue).  This was done for a single sample patient. 
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Table 2: The mean and standard deviations of deformed central prostate location (cm) in the LR 
(left-right), AP (anterior-posterior), and SI (superior-inferior) directions for the SICLE DVFs 
(measured data) and the synthetically sampled DVFs (synthetic data).  The p-value calculated from 
a Wilcoxon rank-sum test is also given between the two distributions. 

Prostate LR AP SI 

Measured Data 
Average Position (cm) 23.32 23.69 14.14 

Standard Deviation (cm) 0.11 0.26 0.11 

Synthetic Data 
Average Position (cm) 23.32 23.69 14.14 

Standard Deviation (cm) 0.12 0.28 0.13 

Hypothesis  
Testing Between 

Distributions 
p-value 0.99 0.97 0.86 

 

 

These tests demonstrated the individual model’s ability to create many synthetic 

deformations taken from a distribution probabilistically tied to that of the original training 

DVFs.  These results give confidence that the KDE method implemented in this work 

created meaningful PDFs for sampling coefficients.  With these tools in hand, the 

problem of sampling synthetic deformations probabilistically tied to the training data can 

be reduced to sampling a set of expansion coefficients from their associated PDFs to be 

incorporated into equation (11). 

However, there are limitations to these tests.  The analysis above only checks 

the ability to create synthetic DVFs consistent with the measured DVFs input into the 

PCA.  This does not test PCA’s ability to correctly predict the statistics of tissue 

deformation for an individual not included in the original training set.  Although the 

model represents the training data, there is no check that the set of training data 

samples was sufficiently large enough to represent the underlying distribution of organ 
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motion.  Ideally, a study to test this would be designed as follows.  First, a PCA model 

would be created using the methods described above from a set of DVFs mapping a 

patient’s fractional anatomy to his planning anatomy.  This model would then be tested 

on its ability to represent DVFs not included in the PCA training set.  The expansion 

coefficients would be calculated using equation (7), at which point they would be 

inserted into equation (11) to calculate the PCA model approximation of the non-training 

set DVFs.  How well the model estimates the non-training set DVFs is a measure of 

how robust the model is in representing the patient’s organ motion.  This more complete 

validation was not possible in the current work, as it required larger amounts of data 

than were available.   

2.2.7. Potential applications 

2.2.7.1. Virtual clinical trials (VCTs) 

The patient-specific PCA model has the potential to be a useful tool when 

performing VCTs.  A VCT is a framework for testing a clinical hypothesis using virtual 

patient data and theoretical outcome (bio-effective) models instead of actual patients 

and clinically observed rates of control and toxicities.  This is quite useful in radiation 

therapy.  Different planning and delivery techniques can be simulated in a treatment 

planning system (TPS) on the patient’s planning image.  The resultant fluence maps 

can then used to calculate the daily dose deposition, given the patient’s different daily 

anatomies (daily images).  DVFs are used to deform the dose to the planning image, 

where the total dose over the course of treatment can be accumulated on a voxel-by-

voxel basis.  The resultant dose distributions from the various planning techniques can 

then be directly compared.  This is generally done with a temporal sequence of CT 
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images simulating the patient’s anatomy on a given treatment day.  In practice, it is not 

common to give a patient enough CT scans to simulate an entire fractionation 

treatment.  This is where the PCA model might be of some benefit. 

Using a limited number of patient CT images with their resultant DVFs mapped to 

the planning image, the PCA model can synthetically create an infinite number of 

unique deformations that are statistically correlated to the input DVFs.  There are two 

main benefits for doing this.  First, an entire fractionation scheme of synthetic anatomies 

can be created using a smaller number of input images.  This is done by deforming the 

planning CT with the inverse of the synthetic DVFs generated with the PCA model.  This 

provides the experimenter with numerous daily anatomies and their exact 

corresponding DVFs, relating the daily image to the planning image.  Using the known 

DVF, contours can easily and accurately be propagated onto the image of the day.  

Also, the synthetic DVF can be used to accumulate dose over a fractionated treatment.  

Using the simulated forward and inverse synthetic DVFs to create the virtual data 

eliminates any registration errors that would occur by using an imperfect deformable 

image registration algorithm on “real” daily images.  Example synthetic geometries are 

given in Figure 5. 
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Axial Sagittal 

  

  

  

Figure 5:  Axial and Sagittal views of three different synthetic geometries for a single patient 
created using the individual PCA model. 

 

There are some limitations to the PCA model approach to VCTs.  The first is that 

the resultant synthetic DVFs are only as good as the underlying data used as input to 

the PCA.  If there is some component of a patient’s anatomical variation that is not 
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present in the training data, this component will also be absent from any PCA model 

derivative anatomy.  It is therefore important to utilize an adequate number of input 

DVFs in order to model the full variability of organ motion in that patient.  For this 

reason, it is also important to use the best possible DVFs as input to the PCA.  This 

study used DVFs that were generated using both grayscale matching and manually 

drawn contour coincidence to drive the registration.  The rationale was to use as much 

a priori knowledge as possible to get the most accurate transformation possible 

describing the deformation.   

Another limitation to using the PCA model is the inability to create wildly different 

anatomies.  All synthetic anatomies are created by deforming the patient’s planning 

image with a known DVF.  Because of this, only features present in the planning image 

will be present in the synthetic image.  For example, if the planning image had 

contained a large gas pocket in the rectum, this feature would be present in all synthetic 

images created by way of the PCA model.  The gas pocket may expand or shrink, but it 

will never go away completely.  This is not the reality, as the presence of bowel gas in 

patients routinely changes day-to-day.  This problem could be addressed by deforming 

the different daily images to the planning image coordinate system, creating a set of 

planning image-like images.  These images would maintain the basic anatomical 

positions, but with varying amounts of bowel gas.   

2.2.7.2. Individual model as input to probabilistic planning 

This PCA model potentially holds some value when used in conjunction with 

PTP.  All PTP methods designed to account for interfractional motion need an estimate 

of the distribution of the potential daily errors.  The PTP algorithm can only account for 
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organ motion described in its underlying measure of the patient’s anatomical 

uncertainty.  It is here that the PCA model described above would be of benefit. 

One such PTP algorithm in which the individual PCA modeling has been 

incorporated is in coverage optimized planning (COP), as first proposed by Gordon et 

al.56  The aim of COP is to build a plan robust to anatomical uncertainty using coverage 

probability.  This creates a plan where there is a high (i.e., >95%) probability that a 

structure will be covered by certain dosimetric criteria on any given day.  COP uses the 

concept of the dose coverage histogram, which is a cumulative distribution of all 

possible voxel doses in the presence of geometric uncertainties.  COP then optimizes 

on the dose coverage histogram, choosing a plan with a high probability (i.e. 95%) of 

delivering a given cumulative dose to the patient over the whole course of treatment.  In 

the initial proof-of-concept paper, a rigid prostate was assumed, with the standard 

deviation of the distribution of systematic and random errors set to 3 mm.  A shift was 

determined as the sum of two samples taken from the systematic and random normal 

distributions.  These shifts were used to calculate the coverage probability, completely 

ignoring deformation. 

To expand this concept, the work presented in this thesis was coupled with the 

research being done with COP.  Instead of rigidly translating the prostate by an 

estimated normal distribution, the PCA model was used to create a more realistic 

patient model for the coverage probability calculation.  Thus, fully 3D deformations of 

the patient’s anatomy were taken into account when optimizing the plan.  This work, of 

which the author of this thesis was a coauthor, was led by Xu and is described in a 

paper published in Medical Physics.63  In this paper, the individual model described 
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above was used to create the virtual dataset of synthetic anatomies needed to compare 

COP technique (CPCOP) to two other planning techniques.  One planning technique 

created a plan utilizing  a fixed, 5 mm uniform margin (FM) and the other utilizing an 

optimized uniform margin (CPOM).  The optimized margin was the uniform margin 

needed to ensure that the D98 was greater than or equal to the prescription dose with 

95% coverage probability (D98,95).  Utilizing the same prostate patient cohort, Xu 

compared the plans using dose coverage criteria as well as complication-free tumor 

control probability (P+).  In the plans, the prostate prescription dose was 78 Gy, with the 

seminal vesicles prescription being 66 Gy.  The two dose limiting structures were the 

bladder and the rectum, with an artificial ring structure used for IMRT optimization.  The 

results are summarized below; the reader is referred to the paper for the details of 

planning and a full analysis of the results.   

Of the three plans, CPCOP was favored in 7/19 patients, while CPOM was favored 

in 12/19 patients, with the advantages of each plan being patient specific.  The patient-

by-patient advantages are given in Table 3, taken from Xu’s paper with permission. 
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Table 3:  Patient study ID, the preferred planning technique and the most representative gain with 
respect to the other two plans in terms of target dose D98,95 for the prostate CTV (CTVprostate) 
or the seminal vesicles CTV (CTVSV), normal tissue coverage Dv,5 for bladder or rectum, and 
probability of complication free control P+. ID with */ † / ‡ denotes CPCOP / CPOM / FM plan that 
fails to achieve target D98,95.   

ID Best Plan  Gain Relative to the Other Plans 

1* CPOM   CPCOP (+0.8% CTVprostate D98,95)    FM (+6.5% P+) 

2*†‡ CPOM  CPCOP (+4.0% CTVprostate D98,95)    FM (+1.3% CTVprostate D98,95) 

3* CPOM   CPCOP (+3.4% CTVprostate D98,95)    FM (+2.8% P+) 

4*‡ CPOM    CPCOP (+7.3% CTVSV D98,95)    FM (+1.0% CTVprostate D98,95) 

5* CPOM   CPCOP (+7.2% CTVSV D98,95)    FM (+11.9% P+) 

6* CPOM   CPCOP (+1.0% CTVprostate D98,95)    FM (+21.5% P+) 

7 CPCOP  CPOM  (-3.2% Rectum, D2,5)  FM (+4.2% P+) 

8* CPOM   CPCOP (+9.8% CTVSV D98,95)    FM (+0.9% P+) 

9*†‡ CPOM   CPCOP (+7.3% CTVSV D98,95)    FM (+5.0% CTVSV D98,95) 

10*†‡ CPCOP  CPOM (+1.2% CTVSV D98,95)    FM (+5.5% CTVSV D98,95) 

11‡ CPCOP  CPOM  (+5.9% P+)  FM (+1.1% CTVprostate D98,95) 

12†‡ CPCOP CPOM  (+0.8% CTVprostate D98,95)  FM (+2.4% CTVprostate D98,95) 

13 CPOM CPCOP (+2% P+)  FM (+3.1% P+) 

14 CPOM   CPCOP (-3.1% Rectum, D2,5)    FM (+3.3% P+) 

15* CPOM   CPCOP (+8.8% D98,95)    FM (+22.8% P+) 

16‡ CPCOP  CPOM  (+1.7% P+)  FM (+1.0% CTVprostate D98,95) 

17* CPOM   CPCOP (+3.9% CTVSV D98,95)    FM (+9.5% P+) 

18*†‡ CPCOP  CPOM  (+0.6% CTVprostate D98,95)  FM ((+0.8% CTVprostate D98,95) 

19 CPCOP  CPOM  (-0.6% Rectum D30,5)  FM (+6.4% P+) 

Table reprinted from Xu with permission. 

2.2.7.3. Individual PCA model as input to adaptive planning 

The patient-specific PCA model has potential application to IGART.  Without a 

sufficient number of images, it is impossible to characterize sufficiently the patient’s 

anatomical motion.  Thus, it is impossible to utilize this statistical model before that 

patient starts treatment.  However, in-room daily patient imaging (such as CBCT) is now 

commonly used for patient setup and verification.  These images may be collected 

during the first several, usually 5,  treatment fractions.  A Beaumont-style ART method 
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could be implemented by building the patient’s individual PCA model offline using these 

initial 5 daily CTs.  The PCA model could then be used to create an adaptive plan to be 

delivered for future treatments.  This could be done once, or continually throughout 

treatment, as more information about the patient’s anatomical motion becomes 

available.   

Future research is needed to test the feasibility of this method for the PCA 

model.  There are several unknowns and complicating factors that would have to be 

resolved before this is deemed a viable option.  First, CBCT images are of substantially 

worse quality when compared to the fan-beam CT images used in the planning process.  

This lack of image quality makes the initial registrations difficult.  Secondly, the number 

of images needed to estimate adequately the patient specific organ motion distribution 

requires investigation.  Using too few images could cause the PCA to miss some modes 

of motion completely.  Beaumont ART uses Kalman filtering to account for the residual 

uncertainty from using a limited number of daily images.  A similar method could be 

implemented for the patient-specific PCA model.   

2.3. Conclusion 

In this chapter, a methodology was described for creating a patient-specific 

statistical model of day-to-day random anatomical deformations.  Such models were 

built for all 19 patients in the dataset, and each model was validated by comparing the 

distribution of the vectors in the initial dataset to synthetically created vectors.  These 

models have potential applications in virtual clinical trials, probabilistic treatment 

planning, and image guided adaptive radiation therapy. 
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3. Population PCA modeling of systematic and random tissue  
displacement errors in prostate cancer 

3.1. Introduction 

In general, a patient-specific statistical model of anatomical motion is not 

possible before the start of treatment.  Several days’ worth of images are required to 

create a model that can accurately describe the magnitude and likelihood of the 

patient’s organ motion, when conventionally there is only a single planning image taken 

before treatment.  In this scenario, a population statistical model, such as one created 

using PCA, could prove beneficial.  A population model could determine the magnitude 

and likelihood of systematic and random deformations across a patient population.  A 

population model also has the potential to model residual systematic and random errors 

that remain after a deterministic correction (i.e. aligning to fiducial markers or organ 

centroid).  Currently, these residual uncertainties remain unaccounted for.  This 

knowledge can be directly incorporated into the planning process by determining the 

probability of an organ of interest occupying a given volume in the patient’s planning 

image.  

PCA has previously been applied to the population modeling problem in the work 

of Budiarto et al.49  In their paper, they created a population shape model of prostate 

and seminal vesicle random displacement.  With an 18 patient data set used to build the 

model, they were able to reconstruct the prostate/seminal vesicle shape of three 

patients not included in their training set to within 1.5 mm.  This work only modeled the 

shape of these two organs, and did not take into account the complex motions of any 
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surrounding anatomy, including the bladder and rectum.  Also, the work of Budiarto 

ignored any systematic displacements.  The work in this thesis expands on this previous 

work by including both systematic and random displacement population modeling for 

the three organ system of the prostate, bladder, and rectum.   

Population modeling is associated with a new set of challenges when compared 

to individual modeling.  As described earlier, each patient has a single systematic error, 

which relates the patient’s planning anatomy to the patient’s mean anatomy.  Each 

patient’s systematic error is unique and cannot be computed before treatment.  Thus, a 

population model of systematic tissue displacement must account for the distribution of 

all possible systematic errors.  A similar distribution of random errors can be created 

across the patient population to form a population model of random tissue 

displacement.  Both systematic and random error distributions should be considered 

when incorporating such modeling into the patient planning.   

A reference coordinate system is needed in the formulation of both systematic 

and random error population models.  Generally, PCA requires numerous 

measurements of a set of variables.  The measurements used in this thesis are the 

displacement vectors “anchored” at the voxel centers of the reference image.  The 

reference image used in the individual model was the patient’s planning image.  

However, each patient’s planning image had a unique coordinate system, which 

represents a problem when trying to pool systematic and random errors from different 

patients.  In this chapter, I propose a solution to this problem: transporting each 

patient’s individual systematic and random errors to a calculated reference anatomy.  

This is accomplished through the use of interpatient DIR.   
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With each patient’s individual statistics transported to the reference coordinate 

system, the concept of   and   (as described previously) can be extended from the 

traditional 1D formulation to 3D for both bony- and prostate centroid-aligned patient 

setups.  PCA models for both systematic and random organ motion can be created in a 

similar fashion to the models described in Chapter 2.  The detailed creation of these 

models and their validation is included in a manuscript to be submitted to Medical 

Physics, attached in Appendix B.  This chapter summarizes the work reported in this 

manuscript, referring to the Appendix for the details and specific results.   

3.2. Construction of a reference image using interpatient DIR 

In order to determine any common modes of systematic or random tissue motion 

in a population of patients, a common coordinate system is needed.  This is achieved by 

determining the transformation,    ,0 refi refh x  that maps each patient’s planning image, 

 ,0 ,iI x  to a reference image,  ref refI x .  This registration can be used to transport 

patient-specific systematic and random errors into the reference coordinate system,

refx .  Determining the interpatient transformations is a challenging task, as the 

anatomies in the two images being registered vary greatly.  Straightforward application 

of SICLE, as described in the previous chapter, failed to converge to a solution.  As a 

result, the prostate, bladder, and rectum were registered separately using contour-only 

driven registrations. 

The construction of  ref refI x  was done by registering each patient’s planning 

image to a preselected patient’s planning image using the organ-by-organ registrations.  

This preselected patient was chosen for its lack of abnormal anatomy (such as minimal 
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bowel gas, artifacts, average organ sizes) upon visual inspection.  The resultant organ-

specific DVFs were then averaged to determine the mean organ DVFs.  Next, the mean 

DVFs were used to deform their associated organ in the preselected patient’s planning 

anatomy to the mean organ shape across the patient population.  These shapes were 

then stitched together to form the reference image,  ref refI x , which was limited to the 

three pelvic organs.  At this point, each of the patient’s planning images was registered 

to  ref refI x  on an organ-by-organ basis, giving the transformations    ,0
bladder

refi refh x , 

   ,0
prostate

refi refh x , and    ,0
rectum

refi refh x , along with their inverses    ,0,0
bladder

ii refg x ,    ,0,0
prostate

ii refg x , 

and    ,0,0
rectum

ii refg x .   

3.3. Transporting patient-specific statistics to the reference coordinate system 

The patient-specific systematic (  ,0i iu x ) and random (      ,0, ,0 ii k iΔu x ) errors 

were then transported into the reference coordinate system.  This was done by treating 

the systematic and random errors as vector-valued images and deforming them using 

each of the transformations,    ,0
bladder

refi refh x ,    ,0
prostate

refi refh x , and    ,0
rectum

refi refh x .  To form a 

single systematic,  ,union ref
i refu x , or random,  ,

,
union ref
i j refΔu x , error in the reference 

coordinate system, the resultant organ-specific motion errors were stitched together 

using equations (5) and (6) in Appendix B.  This was done for two different patient 

setups, a bony-aligned setup and a prostate centroid-aligned setup.  Practically, the 

difference between the two setups was the initial alignment of the patient planning and 

fractional images.   
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3.4. Inverse consistency error 

The common coordinate system requires individual statistics from each patient to 

be mapped to the reference image.  However, for the model to be of any value, 

information gained in the reference coordinates must be mapped back to a patient’s 

local coordinate system.  Any inverse inconsistency in the interpatient transformations 

mapping to and from the reference frame will introduce an “inverse consistency error.”  

To quantify this, patient-specific systematic and random errors were mapped to the 

reference frame, and then immediately back to the patient’s local coordinate system and 

compared with the original.  The mean and standard deviations are reported in 

Appendix B (Figure 2 and Table 1).  In each organ for all patients, the mean inverse 

consistency error is less than 0.2 mm, with over 99%, 98%, and 92% of the voxel-by-

voxel inverse consistency errors less than 0.3 mm for the prostate, bladder, and rectum, 

respectively. 

3.5. Quantifying systematic and random error distributions for the population 

With each patient’s individual statistics successfully transferred to the reference 

coordinate system, a statistical characterization of patient population was derived.  This 

was done by expanding the concepts of group mean, M , systematic ( ) and random (

 ) error distributions to three dimensions.  These concepts were originally used to 

describe the organ motion and setup error at a single point (prostate centroid), which 

was taken as a surrogate for the entire prostate.  The three-dimensional formulations 

are given in Appendix B equations (8)-(10).  Maps of these values for the two prostate 

centroid and bony patient setups are given in Appendix B (Figure 3 and Figure 4).  The 

results are as expected, with the bony aligned   and   values being smaller near bony 
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edges and a centroid-aligned setup showing smaller   and  in the central portion of 

the prostate.   

3.6. Population PCA modeling of systematic and random tissue displacement 
errors 

PCA modeling was performed separately for systematic and random errors, as 

well for the two different patient setups.  The PCA formalism for this scenario is given in 

Section II.F. of Appendix B and is done in the same manner described in the previous 

chapter.  The two covariance matrices used for the systematic and random errors are of 

particular importance, given below. 

  1

1

Tsys sys sys

N



C D D   (12) 

  
1

1 Trand rand rand
N

i
i

P





C D D   (13) 

where sysD  and randD  are the mean subtracted data matrices of the population of 

systematic and random errors, respectively.  In total, the systematic PCA model is 

calculated from 19 systematic errors while the random PCA model is created from 210 

random errors.   

3.7. PCA modeling error 

Unlike in the previous chapter, not all eigenvectors were used in the modeling.  In 

both the systematic and random population PCA models, only the eigenvectors needed 

to represent 95% of the variance were kept.  Eleven and 33 eigenmodes were needed 

for the systematic and random population models, respectively, to represent 95% of the 

variance in the data.  Discarding some eigenmodes introduced error in reconstructing 
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the original set of systematic and random errors.  To quantify this “PCA modeling error,” 

the difference was computed between the original systematic and random errors and 

those reconstructed using the limited number of eigenvectors.  For systematic error, the 

voxel-by-voxel differences were calculated for each organ, with 96% of all organ voxels 

having modeling error less than 1 mm.  The patient-by-patient results for both 

systematic and random error are given in Figure 65 of Appendix B. 

3.8. Leave-one-out study 

The PCA models created in this chapter are only useful if they can accurately 

describe the systematic and random errors of patients not part of the original training 

set.  To test this, a leave-one-out study was conducted, where 19 different systematic 

and random error PCA models were created, each one using data from only 18 

patients.  Each model was then used to reconstruct the systematic and random errors 

from the “left out” patient.  Within each organ, the voxel-by-voxel differences between 

the reconstructed systematic and random errors were calculated, with the mean and 

standard deviations of these differences reported.  The mean voxel differences were all 

near zero, but the standard deviations were on the order of several millimeters for some 

patients, as shown in Appendix B, Figure 76.  For the patient population, the mean, 

absolute mean, and standard deviations of the modeling errors in the leave-one-out 

study are given in Appendix B, Table 3.  The leave-one-out errors were larger for the 

systematic population PCA model, suggesting a larger dataset may be necessary to 

describe adequately the systematic anatomical motion in prostate cancer patients.   
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3.9. Organ occupancy maps 

A straightforward and useful application of the population systematic and random 

PCA models is in the construction of organ occupancy maps, which give the probability 

of an organ occupying a certain voxel on any given treatment day.  To do this, synthetic 

systematic and random errors must be sampled from their respective PCA models.  The 

sampling was done using the technique outlined in the previous chapter, with KDE used 

to construct the PDFs for each eigenmode.  In this work, the sampled systematic errors 

were added to the sampled random errors to produced synthetic deformations.  These 

deformations were then used to deform the reference anatomy, representing possible 

instances of the treatment day anatomies.  Each voxel was marked with a 1 if it was 

within the synthetic anatomy, and marked with a 0 otherwise, creating a binary image.  

This process was performed 1000 times, with the binary images averaged to yield 

probability of the organ occupying a given voxel on a given day.  This was done for both 

bony- and centroid-aligned setups, and the results are given in Appendix B, Figure 87.  

The centroid alignment has greater certainty in prostate localization when compared 

with bony-aligned setup.   

3.10. Discussion 

This chapter outlines the creation of fully 3D population models of systematic and 

random organ motion in prostate cancer patients.  Patient-specific data was transported 

to the reference frame via interpatient DIR.  These interpatient registrations were a 

difficult task; large discrepancies in patient anatomies caused the SICLE algorithm to 

fail in instances where the whole CT image was used.  Alternatively, this work used a 

method where each organ was registered separately using contour information only.  
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Although this approach was feasible for the prostate, bladder, and rectum, other pelvic 

structures of interest such as the pelvic lymph nodes and seminal vesicles were not 

modeled in this work.  Using a contour-only registration also made the modeling 

dependent on SICLE’s regularization (linear-elastic constituitive law).  For this reason, it 

is possible a finite-element DIR algorithm would have been better suited to this work, as 

it can produced non-diffeomorphic DVFs with support limited to the specified organs.   

For the population modeling described in this chapter and its associated 

appendix, interpatient registrations were used to directly deform systematic and random 

displacement vector fields to and from the reference coordinate system.  This method, 

as used in this work, only represents an approximation of the true vector transport.  As 

the systematic and random displacement vectors are transported between the reference 

and patient planning images, the orientation and magnitude of these vectors must 

change as a function of the transformation from the reference to the new image space.  

Mapping vectors from the reference to the planning images should have been done 

using the pushforward, or differential of the interpatient transformation.  The 

pushforward of the transformation  ,0i refh  is denoted by  ,0i refd h  and is a 

transformation from 3 3R R .  The pushforward is a linear map from the tangent space 

in the patient’s planning image to the tangent space in the reference image, and is 

computed as the Jacobian of  ,0i refh .  In this thesis, the pushforward was ignored.  

Large differences in the results presented in this thesis due to this omission are not 

expected to be substantial, as the organ shapes, even between patients, did not vary 

greatly.  In all future work, the pushforward will be utilized to transform the systematic 

and random vectors.     
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The population models created in this chapter have several possible clinical 

applications.  One apparent application is their potential use in PTP.  The work of Xu63 

simulated random organ motion, but assumed a known patient-specific systematic error 

for each patient in their implementation of COP.  This work could be extended to include 

simulated systematic error as well, as each patient’s systematic error is unknown before 

treatment.   

A more straightforward application of the PCA population models to patient 

planning is described in the following chapter.  This method involves using the organ 

occupancy maps calculated above to create anisotropic PTVs.  The organ occupancy 

maps can be thresholded to ensure a certain level (for example, 95%) of target 

coverage.  The dosimetric impact of planning on the PCA-based PTVs for bony- and 

centroid-aligned patients will be the focus of the next chapter.  
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4. Clinical application of a population statistical model of  
prostate cancer anatomical motion 

4.1. Introduction 

The previous chapter centered on the creation and validation of systematic and 

random tissue deformation PCA statistical models for a population of male pelvic 

patients.  In this chapter, the systematic and random tissue deformation statistical 

models will be referred to jointly as the “population PCA model.”  The ultimate value of 

any such model is its ability to deliver a better radiation therapy plan to the patient.  In 

this context, a better plan is one that is more likely to improve tumor control and/or 

reduce normal tissue toxicity when compared to the current standard of practice.  In this 

work, physical doses to the CTV and OARs were used as surrogates for these 

outcomes.  There are numerous ways to apply the population PCA model clinically.  

One of the more intriguing possibilities is to incorporate it into probabilistic planning.  

Probabilistic planning could theoretically incorporate the geometrical uncertainty as 

quantified by the PCA model directly into the optimization process.  The goal would be 

to find the optimal plan to best safeguard against dosimetric errors introduced by the 

deforming anatomy. 

In this study, a simpler clinical application of the population PCA model was 

tested.  The model was used to create “smarter” margins around a patient’s prostate, as 

contoured on the planning image.  These margins were calculated from the model by 
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determining the magnitude, direction, and likelihood of a given prostate deformation.  

These margins have the ability to be anisotropic, meaning that the thickness can vary 

as a function of location on the prostate.  This allows for a more liberal margin in areas 

where a high magnitude of deformation is likely and a more conservative one in areas 

where deformation is less likely.   

This population PCA model-generated PTV was compared to a pseudo-uniform 

margin, which is typically used currently in prostate treatments.  The comparison was 

done using the VCT framework.  Two plans created from two different PTVs were 

applied to the daily anatomies of an entire fractionation scheme.  The hypothesis was 

that using anisotropic margins derived from the population PCA model would provide, 

on average, plans with an improved therapeutic ratio compared to the current standard 

of treatment.  Information from the model regarding the deformations of the bladder and 

rectum was not used in the planning process. 

4.2. Methods and materials 

4.2.1. Planning data 

The dataset used in this study was synthetically derived from the individual PCA 

model, as described in Chapter 2.  For each of the 19 NKI patients described 

previously, the DVFs mapping the fractional images to the planning images were used 

to create an individual PCA model.  Forty-three synthetic deformations were sampled 

from each model, representing unique anatomies for an entire radiation fractionation 

regimen.  The resultant DVFs were then used to deform the patient’s planning contours, 

creating a sequence of 43 synthetic prostate, bladder, and the rectal anatomies.  
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Together, these 43 synthetic anatomies represented the patient’s daily anatomies over 

a whole therapy course.  

4.2.2. VCT subtrials  

The VCT in this project had two subtrials, each comparing two arms.  The two 

arms of each subtrial comprised two setup strategies: an online bony-alignment IGRT 

technique and an online prostate centroid-alignment IGRT technique.  The centroid-

alignment method is similar to the online procedure presented by Smitsmans, in which 

the prostate rigid alignment to the planning prostate anatomy is computed from the 

grayscale values of daily CBCTs.64,65  For each setup strategy, two arms were 

compared: a plan using population PCA model-based anisotropic margin and a plan 

using a current standard planning technique.  The first subtrial tested a bony-aligned 

population PCA model-based PTV ( PTV bone
PCA ) against a PTV created using the van Herk 

margin recipe ( PTVvH ).  The second subtrial tested a centroid-aligned population PCA 

model-based PTV ( PTV cent
PCA ) against a PTV ( PTVcl ) created with the margin used in our 

clinic at VCU.  For each subtrial and arm, an IMRT plan was created using the patient’s 

planning image.  The planning image was a real patient (not synthetically derived) 

image, with physician-drawn contours.  Dose invariance was assumed, meaning the 

dose distribution in the accelerator coordinate system for a given fluence profile does 

not vary with changes in the patient’s anatomy.66  This assumption greatly speeds up 

the computation time needed for the VCT, as the dose distribution calculated on the 

planning image was overlaid on each daily synthetic geometry.  This assumption has 

been shown to introduce dose calculation errors of <2% in IMRT plans.66  The dose was 
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then accumulated on the planning image using the known, synthetically sampled DVFs.  

DVH metrics were calculated for each patient’s synthetic treatment course, and these 

were averaged over all patients. 

The second arm for each subtrial will hereafter be referred to as the “traditional 

plan.”  The PTV for these plans was taken by using a semi-uniform margin to expand 

the physician-drawn planning GTV (which is taken to be the prostate only).  The margin 

for these plans was calculated differently for the two subtrials, each described in detail 

below.  The differences between the two are fully described in Appendix B.   

4.2.2.2. Bony-aligned traditional plan 

For the bony-aligned construction of the traditional PTV, the classic van Herk 

margin formula was used to construct a margin in the left/right, anterior/posterior, and 

superior/inferior directions.  Using manually drawn prostate contours on each bony-

aligned fractional image for each patient, the prostate centroids were computed and 

recorded.  The systematic and random errors (  and  ) of the centroid shifts were 

calculated and used as input to the van Herk formula, given below. 

 Margin 2.5 0.7     (14) 

The values for   and   are given in Table 4, as well as the margin expansion.  

These were used to create the vHPTV  in the bony-aligned subtrial of the VCT. 
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Table 4:  The calculated values for  ,  , and the van Herk margin for the NKI dataset used in this 
study.   

 LR (mm) AP (mm) SI (mm) 

  0.5 2.6 2.0 

  1.0 2.5 2.4 

van Herk Margin 2.1 8.4 6.7 

Abbreviations: LR=left/right, AP=anterior/posterior, SI=superior/inferior. 

4.2.2.2. Bony-aligned plan based on PCA model 

The population PCA models of bony-aligned patients for systematic and random 

errors were used to sample a synthetic systematic and a random error in a reference 

coordinate system.  To avoid biasing the VCT, the PCA models were created using only 

data from other patients.  For example, only systematic error DVFs from patients 2-19 

were used in the model used in the creation of the PTV bone
PCA  for the first patient.  The 

sampled systematic and random errors were then added to create a synthetic 

deformation.  This deformation was transported to the patient’s local coordinate system 

using inter-patient DIR.  The synthetic deformation, now in the patient’s local coordinate 

system, was used to deform the patient’s prostate planning contour.  This deformed 

contour represented a realization of one possible instance of the patient’s daily prostate.  

This process was repeated (456 times in total) in order to create an organ occupancy 

diagram of the prostate overlaid on the planning image.  The PTV bone
PCA  was taken to be 

the volume that encapsulated 95% of all possible deformations.  As coverage followed a 

Bernoulli distribution, 456 samples were calculated; this number corresponded to a 95% 

confidence interval that the target coverage would be ±2% of the intended threshold.  A 

flowchart of the bony-aligned VCT subtrial is given in Figure 6. 
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Figure 6:  Flowchart showing the VCT process for the bony-aligned subtrial. 
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4.2.2.3. Centroid-aligned traditional plan 

The second subtrial had the patient aligned daily on the prostate centroid.  The 

daily anatomies were created in the same manner as the bony setup, but with the extra 

step of the aligning the image on the prostate centroid each day.  Only translation of the 

patient was considered.   

For the centroid-aligned traditional plan, the clPTV  was chosen to be a clinically 

popular 5 mm margin expansion in all directions except posteriorly, where a 3 mm 

expansion was used in an effort to spare the rectum from unnecessary dose.  In a study 

led by Wen, the authors concluded that this margin is a good choice in IMRT plans, as 

judged by a superior complication-free tumor control probability (P+) when compared to 

margins of 10 mm/6 mm posteriorly and a 3 mm uniform margin.67 

4.2.2.4. Centroid-aligned plan based on PCA model 

The PTV cent
PCA  was determined in a manner very similar to that described in Section 

4.2.2.2., with the difference being in how the population PCA model was created.  The 

prostate centroid was used to align each patient’s fractional images to his planning 

image.  After this initial alignment, the DVFs associated with these two images, 

     ,0, ,0 ii k iu x , were calculated.  From this point, the patient-specific systematic and 

random errors were calculated as described in Chapter 2, and the centroid-aligned 

population PCA model was created using the methods outlined in Chapter 3.  A 

flowchart for the centroid-aligned subtrial is given in Figure 7. 
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Figure 7:  Flowchart outlining the VCT process for the centroid-aligned based subtrial. 
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4.2.3. Planning setup and objectives 

For each trial arm of each subtrial, seven 6 MV beams were used to create an 

IMRT plan.  The beam angles used were 30°, 80°, 130°, 180° (posterior), 230°, 280°, 

and 330°, with the isocenter set to the PTV centroid in the planning image.  The 

planning objective criteria (Table 5) were identical.  Each patient had a prescription 

dose to the arm-specific PTV of 86 Gy over 43 fractions.  This prescription was 

designed after the dose-escalation planning protocol of Memorial Sloan Kettering.68,69  

OAR dose volume objectives were selected to achieve the minimal dose to the OARs 

while still providing target coverage.  Universal dose objectives are impossible to 

determine for every patient, as some patients present with more favorable anatomies 

than do others.  In IMRT planning, the optimizer stops once it has met all objectives; 

however, this may not be the optimal plan, as normal tissue doses may have been able 

to be lowered beyond the planning objectives.  To solve this problem and to guide the 

optimizer to achieve maximum therapeutic ratio, the bladder and rectum included 

generalized equivalent uniform dose (gEUD) as well as conventional DVH objectives.  

gEUD is the dose, which if uniformly delivered, gives the same radiobiological effect as 

the inhomogeneous dose of interest.70,71  The equation for gEUD is as follows: 

 

1
a

a
j j

j

gEUD v D
 

  
 
   (15) 

where jv  is the volume of the dose volume bin with dose jD , and a  is a tissue dose-

response parameter.  For healthy tissues, a  is a positive number.  In this work, an extra 

planning objective was set for the bladder and rectum, calling for a maximum gEUD = 0 

Gy ( 4a  ).  This objective can never be achieved while still meeting PTV objectives, but 
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it is useful in driving down doses to bladder and rectum below their DVH objectives.  To 

ensure that OAR dose reduction was not achieved at the expense of PTV coverage, a 

very low weight (w= 61 10 ) was used for the gEUD objectives.  The OARs used in the 

optimization were those manually contoured on the patient’s planning image.  All 

planning and dose calculations were done using Pinnacle treatment planning system 

(v9.1, Philips Medical Systems).  The maximum number of iterations used in the 

optimization process was set to 50.  In addition to the OAR gEUD objectives, the DVH 

planning objectives in Table 5 were used for plan optimization.   

 

Table 5:  Planning objectives for use in IMRT beam optimization.   

Organ Dose Criteria 

PTV D97≥86 [constrain], D2≤90.7 [80] 

Bladder D70≤19.8 [50], D50≤38.7 [25], D30≤61.9 [25], D20≤69.7 [15], D14≤74 [15], 
D9≤79.1 [15], D2≤89.4 [15] , EUDmax=0 [a=4, w= 61 10 ] 

Rectum D50≤38.7 [50], D30≤55.5 [25], D20≤69.7 [15], D5≤74.8 [50], D2≤82.6 [50], 
Dmax=84.3 [50], EUDmax=0 [a=4, w= 61 10 ] 

Femur D1≤54.6 [10] 

Ring Structure Dmax=75.3 [1] 

All doses are in Gy, with the objective weights in brackets. 

 

4.2.4. Dose accumulation 

Dose accumulation was done using in-house bio-dose accumulator software 

within the research computing framework (RCF), described by Fatyga et al.72  For each 

patient, the dose accumulator reads in the sequence of Pinnacle computed dose 
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distributions (one for each interfraction instance of anatomy), the planning image and its 

contours, and the corresponding sequence of 43 synthetic DVFs.  These DVFs 

represent the daily anatomies of the patient throughout the whole treatment course.  

The dose (which is assumed invariant), was then mapped to the planning image by 

each DVF and accumulated for the prostate, bladder, and rectum, creating a DVH for 

each of the three organs.  The D90, D95, and D97 were reported for the prostate, and the 

D50, D30, D20, and D5 were reported for the bladder and rectum.  The differences in 

these metrics were compared between the two planning arms.  Hypothesis testing was 

performed in order to assess the significance (p<0.05) of the differences between the 

DVH metrics for each arm.  For this purpose, a paired t-test was used. 

4.3. Results 

4.3.1. bone
PCAPTV  and vHPTV  comparison 

For every patient, the volume of PTV bone
PCA  was smaller than its corresponding 

PTVvH .  Across all patients, there was a mean 15.7% (range 10.3 – 23.2%) reduction in 

volume size.  This reduction in volume is a promising but not definitive indicator of 

possible OAR tissue sparing, as this metric gives no information on which areas of the 

PTV were being trimmed.  A visualization of the direct comparison between the two PTV 

expansions versus location is given in Figure 8 for a sample patient.  Only one patient is 

shown, as the magnitudes and patterns are similar between all patients.  Here, a 

colormap representing the PTV margin is overlaid on the manually drawn planning 

contour of the prostate.  In the area adjacent to the bladder (anterior to the prostate), 

the PCA model yields a margin reduction compared to van Herk of 2-3 mm and smaller 
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reduction in the left and right directions.  However, a substantial (~4 mm) increase in the 

margin is suggested by the PCA model in the area adjacent to the rectum.  The 

dosimetric effect of this increased margin was investigated. 
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Orientation Distance to PTV bone
PCA  Distance to PTVvH   

 

  

Beam’s eye view:  
Posterior 

 

  
Beam’s eye view:  Anterior 

 

  

Beam’s eye view:  
Superior 

Figure 8:  Distance to PTV expansion maps for a sample bony-aligned patient for three different orientations from a beam’s eye view 
perspective.  The shape is that of the physician-drawn prostate where the color represents the distance to the closest point (distance in 

mm) for the two different PTV expansions, PTV bone
PCA  and PTVvH .  PTV bone

PCA  offers smaller margins in all locations except against the 

rectum (top row), where they can be as large as 13 mm. 
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4.3.2. VCT results for bony setup subtrial 

The DVHs for three patients are given in Figure 9.  These three patients 

represent three possible outcomes:  one in which the PCA plan is superior, one in which 

the van Herk plan is superior, and one in which they are comparable.  In order to 

determine any possible benefit for the population of the patients, DVH metrics were 

extracted for each patient.  The means and standard deviations are presented in Table 

6.  The PCA and van Herk plans each delivered the prescription dose of at least 86 Gy 

to 97% of the prostate.  The differences in prostate dose delivery were statistically 

insignificant, suggesting that the PCA posterior margin was unnecessarily large, while 

the van Herk margin was too large in all other directions.  Across the patient population, 

the PCA plan delivered significantly less dose to the D30 ( 47.96 10p   ), D20 (

54.78 10p   ), and D5 (
33.45 10p   ) of the bladder (mean reduction of 1.9, 2.7, and 

1.2 Gy, respectively).  For the rectum, the relationship was more complicated.  The 

rectal dose differences between the two plans were deemed significant for the D50 

( 0.0230p  ), D20 (
57.51 10p   ), and D5 (

68.03 10p   ).  On average, the rectum D50 

for the PCA plan was lower by 1.0 Gy, but this plan provided higher doses to the D20 

and D5 (2.6, and 2.3 Gy, respectively).  This implies that the PCA plan is less effective in 

reducing the high doses to small subvolumes of the rectum, yet it may help limit lower 

doses to larger portions of the rectum.  On a patient-by-patient basis, the DVH metrics 

investigated are plotted for the prostate, bladder, and rectum in Figure 10.  For the 

bony-aligned setup, the “better” plan is not easily determined.  Using the PCA plan 
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represents a tradeoff between lowering the dose to the bladder and giving higher dose 

to portions of the rectum.    
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a.)  

b.)  

c.)  

Figure 9:  Example DVHs for three patients in the bony-aligned VCT subtrial.  Dashed 
lines represent plans using PTVvH  while solid lines represent plans using PTV bone

PCA .  

Curves are given for the prostate (green), bladder (blue), and the rectum (red).  Image a) 
represents an instance where the van Herk base plan gives a resultant plan that is better 
than the PCA based plan.  Image b) shows a plan where the plans are comparable.  Image 
c) shows an instance where the PCA plan is deemed better. 
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Table 6:  The mean and standard deviation of selected DVH metrics in the prostate, bladder and 
rectum over all 19 patients in the bony-aligned setup.  The right-hand column gives the difference 
of the mean doses.  A negative difference indicates a mean dose reduction in plans created using 

PTV bone
PCA .   

 
DVH 

Metric 
Mean PCA 
Dose (Gy) 

Mean 
Traditional 
Dose (Gy) 

Mean PCA Dose - 
Traditional Dose 

(Gy) 
p-value 

Prostate 

D97 86.7±2.1 86.3±2.9 0.4 0.130 

D95 87.4±1.6 87.1±2.3 0.3 0.408 

D90 88.1±1.2 88.0±1.6 0.1 0.532 

Bladder 

D50 26.7±15.4 27.5±15.9 -0.8 0.0881 

D30 47.9±16.7 49.8±16.9 -1.9 7.96x10-4 

D20 63.1±14.5 65.8±13.4 -2.7 4.78x10-5 

D5 85.6±3.5 86.8±2.6 -1.2 3.45x10-3 

Rectum 

D50 36.0±9.2 37.0±8.5 -1.0 0.0230 

D30 56.0±7.4 55.0±7.0 1.0 0.0604 

D20 66.8±8.5 64.2±8.1 2.6 7.51x10-5 

D5 82.6±4.6 80.3±5.7 2.3 8.03x10-6 
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a.)  

b.)  

Figure 10:  Several DVH metrics for the prostate (top), bladder (middle) and rectum 
(bottom) for the bony-aligned setup.  The PCA based plan doses are the solid dots while 
the doses from the van Herk based plan are represented with an x.  The dashed 
horizontal lines show the planning criteria used with the associated DVH metric. 
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4.3.3. 
cent
PCAPTV  and clPTV  comparison 

Similar to the bony-aligned setup, the volume of PTV cent
PCA  was smaller than the 

PTVcl  for every patient.  The mean reduction in volume size was 27.1% (range 20.8 – 

37.4%).  A visualization of the direct comparison between the two PTV expansions 

versus location is given in Figure 11 for a sample patient.  Also similar to the bony 

setup, the margin to create PTV cent
PCA  is smaller than the margin for PTVcl  in every 

direction with the exception of posteriorly (adjacent to the rectum).  This effect was not 

as pronounced, however, in this scenario.   
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Orientation Distance to PTV cent
PCA  Distance to PTVcl   

 

  

 

Beam’s eye view:  Posterior 

 

  
Beam’s eye view:  Anterior 

 

  
Beam’s eye view:  Superior 

Figure 11:  Distance to PTV expansion maps for a sample centroid-aligned patient for three different orientations from a beam’s eye 
view perspective.  The shape is that of the physician drawn prostate where the color represents the distance to the closest point 

(distance in mm) for the two different PTV expansions, PTV cent
PCA  and PTVcl . 
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4.3.4. VCT results for centroid-aligned setup subtrial 

The DVHs for the same three patients as in the bony-aligned setup are given in 

Figure 12, this time aligned on the prostate centroid.  The population mean and 

standard deviation of selected DVH metrics are presented in Table 7.  Similar to the 

bony-aligned setup, both centroid-aligned plans delivered, on average, the prescription 

dose to 97% of the prostate.  While both provided acceptable target coverage, the PCA 

plan significantly reduced the dose on average to both the bladder and the rectum for 

the DVH metrics investigated; the lone exception was D5 to the rectum.  Here, no 

significant difference was found between the two plans.  The p-values are given in 

Table 7.  On a patient-by-patient basis, the four DVH metrics investigated are plotted for 

the prostate, bladder, and rectum in Figure 13.  
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(a.)  

(b.)  

(c.)  

Figure 12:  Example DVHs for three patients in the centroid-aligned VCT subtrial.  Dashed 
lines represent plans using PTVcl  while solid lines represent plans using PTV cent

PCA .  

Curves are given for the prostate (green), bladder (blue), and the rectum (red).  Image (a) 
represents an instance where the PCA based plan provides less dose coverage to the 
prostate.  Image (b) shows a plan where the plans are comparable.  Image (c) shows an 
instance where the PCA plan is deemed better. 
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Table 7:  The mean and standard deviation of selected DVH metrics in the prostate, bladder, and 
rectum over all 19 patients in the centroid-aligned setup.  The right-hand column gives the 
difference of the mean doses.  A negative difference indicates a mean dose reduction in plans 
created using PTV cent

PCA .   

 
DVH 

Metric 
Mean PCA 
Dose (Gy) 

Mean 
Traditional 
Dose (Gy) 

Mean PCA Dose 
- Traditional 
Dose (Gy) 

p-value 

Prostate 

D97 87.0±1.1 87.4±1.2 -0.4 0.0956 

D95 87.4±0.9 88.0±0.8 -0.6 0.0323 

D90 88.1±0.7 88.6±0.6 -0.5 0.0117 

Bladder 

D50 20.7±13.0 24.0±12.8 -3.3 2.93x10-3 

D30 40.0±15.5 45.4±15.0 -5.4 5.81x10-4 

D20 54.8±15.1 61.6±13.5 -6.8 6.22x10-5 

D5 83.2±5.1 86.1±3.0 -2.9 1.40x10-4 

Rectum 

D50 34.0±9.7 37.5±8.3 -3.5 8.84x10-4 

D30 50.4±5.8 53.2±4.5 -2.8 1.13x10-4 

D20 59.2±6.2 61.0±4.4 -1.8 3.90x10-3 

D5 78.0±3.7 77.9±2.8 0.1 0.710 

 

  



 

81 
 

 

 

 

Figure 13:  DVH metrics for the prostate (top), bladder (middle) and rectum (bottom) for 
the centroid-aligned patient setup.  The PCA based plan doses are the solid dots while 
the doses from the 3/5mm plan are represented with an x.  The dashed horizontal lines 
show the planning criteria used with the associated DVH metric. 
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4.4. Discussion 

Results from the centroid-aligned VCT subtrial show that the PCA margin plan 

provides adequate prostate dose coverage while reducing the dose to the bladder and 

rectum for most (>75%) of the patients when compared to the plan based on the 5/3 

mm margin.  Importantly, applying the population PCA model to create a patient’s PTV 

provides a systematic and reasoned method to determine margins for prostate contour-

aligned patients.  While the formulas of Stroom and van Herk provide this function for 

bony-aligned setup, their formulas cannot be applied to the centroid-aligned case.  In 

clinical practice, the margins currently used for this patient population are created 

somewhat arbitrarily and vary widely between clinics.  The method described in this 

thesis could potentially standardize the practice for margin creation across clinics.   

While the results of the VCT were promising for the PCA-based plan in centroid-

aligned patients, they were less so for patients aligned to bony anatomy.  The PTV bone
PCA  

was a smaller volume than PTVvH , yet the PCA-based plan offered a modest but 

significant dose reduction for the bladder, while raising the dose to parts of the rectum.  

In the bony-aligned trial, the PCA based plan resulted in a higher D5 in the rectum for all 

patients.  This result is unsurprising, as the PCA model of bony-aligned patients 

requires a large (up to 13 mm) margin at the prostate/rectum interface, compared to the 

8.4 mm margin computed from the van Herk formula.  This difference in margin size did 

not compromise the CTV coverage, suggesting that the 95% coverage goal of the PCA 

margin is too strict.  Future work will investigate the dosimetric effect of the more 

modest coverage goals of 90% and 80%.  Another possible explanation for the posterior 

margin difference is that the van Herk formula indicates one margin for the posterior and 
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anterior directions.  The PCA model shows the prostate having larger and more varying 

shifts posteriorly.  An example of this variability at the rectum is shown in Figure 14.  

The pubic symphysis is anterior to the prostate, limiting the amount of motion allowed in 

that direction.  The lack a motion in the anterior direction may reduce the formula-

suggested margin in both the anterior and posterior directions.  This would also explain 

why the PCA margin is smaller than the van Herk margin in the anterior direction.   

 

 

Figure 14:  An example of the prostate’s variability near the rectum interface for bony-aligned 
data.  The planning contours for the prostate and rectum are shown in red while the yellow lines 
are the physician drawn contours on a treatment day.  On this day, the rectum seems to be 
pushing the prostate against the pubic symphysis.   

 

This VCT represents a straightforward and simple approach to applying statistical 

modeling to the clinical process.  The only criterion used to create the PTV was the 95% 
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probability of encompassing the prostate.  Stroom and van Herk both used dose to the 

prostate as their final endpoint.  It is possible that the margins could be further reduced 

if the dose falloff is taken into consideration.  The work of Gordon et al. showed that the 

van Herk formula overestimated the necessary margin73 and that this was due to the 

formula’s assumption of a perfectly conformal target dose.74  The validity of the PCA 

margin developed in this work similarly suffers from not accounting for the dose falloff.   

In this VCT, information from the PCA model on the motion of the bladder and 

rectum was ignored.  A similar method of thresholding the prostate occupancy diagram 

could be extended to the OARs to create a planning organ at risk volume (PRV).  Due 

to the large amounts of deformation in the bladder and rectum, the 95% occupancy 

diagram will potentially create large PRVs, which could be unwieldy in the planning 

process.  Further research must be done to determine a sufficient thresholding 

percentage.  Planning objectives may also have to be updated to account for the larger 

planning volumes. 

4.5. Conclusion 

For two different modes of IGRT daily online setup, the VCT framework was used 

to compare the dosimetric differences between a PTV computed from a statistical model 

and a PTV commonly used in current clinical practice.  For bony-aligned setup, there 

was no clear better method between the PCA- and van Herk-based plans for the 19 

patients.  For centroid-aligned setup, the PCA plan provided proper dose coverage to 

the prostate while reducing the dose to the bladder and rectum in most patients when 

compared with a semi-uniform margin of 5 mm (3 mm posteriorly). 
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5. Conclusion 

5.1. Patient-specific PCA modeling 

Chapter 2 outlined the use of the PCA technique in modeling the patient-specific 

random errors of patients undergoing fractionated definitive radiation therapy.  By using 

the SICLE DIR algorithm, deformations over the entire image volume were modeled.  

Previously, only the shapes of select organs (prostate, bladder, and rectum) had been 

modeled.  Use of PCA technique allows the patient’s random error to be represented by 

a linear combination of eigenmodes and expansion coefficients.  These expansion 

coefficients are statistically independent of one another, meaning the probability of a 

given random error is the same as the probability of selecting the associated set of 

expansion coefficients.  To compute the expansion coefficient PDFs, KDE was used 

with a Gaussian kernel.  The PDFs allow for the sampling of synthetic random error 

DVFs.  To validate the model for all voxels lying within the three organs of interest, the 

distributions of vector displacements derived from the original sequence of training 

DVFs were compared to those derived from a much larger set of synthetic DVFs 

randomly sampled from the patient-specific PCA model.  This was done for all patients, 

and no significant differences between the vector distributions were found in any voxel.  

Patient-specific modeling has potential applications in VCTs, allowing researchers to 

create a full fractionation scheme of realistic daily anatomies from a smaller dataset.  An 

example of this model’s use in probabilistic planning was also given.63  
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5.2. Population PCA modeling 

In Chapter 3, the PCA technique was extended from patient-specific modeling to 

population modeling of the male pelvis.  To do this, a common reference coordinate 

system was needed.  In this thesis, I present one solution to the difficult problem of 

patient-to-patient registration, enabling the patient-specific systematic and random 

errors to be mapped to the common reference coordinate system.  Due to the difficulty 

of interpatient DIR, the systematic and random errors were mapped separately for each 

organ (prostate, bladder, and rectum) and stitched together in the reference coordinate 

system.  The inverse consistency error introduced by mapping patient’s systematic and 

random errors to and from the reference coordinate system was determined to be ≤ 0.1 

mm for most voxels within the three organs.  The well-known parameters of   and  , 

which are measurements of the systematic and random error distributions, were 

expanded to the 3D volume covering the entirety of the prostate, bladder, and rectum.  

These parameters were calculated for each organ voxel and for both bony-aligned and 

prostate centroid-aligned patient setups.  The centroid-aligned setup showed smaller 

(~2.5x) systematic and random errors within the prostate when compared to bony 

alignment.  The two setup approaches each had unique distributions of errors.  Each 

setup showed smaller systematic and random errors near the alignment points (bony 

anatomy and prostate centroids).    

PCA was used to successfully model the systematic and random errors in a 

population of prostate cancer patients.  A population systematic and random model 

used data from a population of patients to describe the magnitude and likelihood of a 

given deformation.  Separate models were created using the bony-aligned and prostate 
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centroid-aligned data.  For all models, the PCA reconstruction error was calculated as 

the error introduced by using a limited number of eigenmodes (eigenmodes 

representing ≥ 95% of the overall variance).  In the voxels within the prostate, the mean 

systematic and random errors were all near zero with standard deviations of ≤ 0.56 mm 

in all directions.  In order to test the model’s ability to represent systematic and random 

errors not included in the PCA training data, a leave-one-out study was performed.  

Each patient’s systematic and random errors were reconstructed using a PCA model 

constructed from data exclusively from other patients.  However, the standard deviation 

of the voxel differences between the PCA representations of the “left out” patient and 

the original systematic DVF was over 2 mm in the bladder anterior-posterior and left-

right directions.  These standard deviations were smaller for random errors, yet still over 

a millimeter in some directions.  The larger errors in the systematic error leave-one-out 

study indicate that a larger dataset may be necessary to model all modes of systematic 

tissue motion.  This work is the first time that both systematic and random tissue 

displacements have been modeled for the prostate patient population. 

5.3. Clinical application of the population model 

In Chapter 4, I used the population models described in Chapter 3 to create 

anisotropic PTV margins and tested their efficacy relative to conventional PTV margin 

recipes via a VCT framework.  For both bony- and centroid-aligned setups, synthetic 

systematic and random prostate DVFs were sampled from their respective PCA models.  

These DVFs were then summed to create a synthetic random instance of deformed 

central pelvic anatomy.  The interpatient registrations were used to transport each 

synthetic prostate DVF to the planning image of the patient and to deform the physician-
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drawn planning contours.  By averaging the set of bitmaps representing the synthetically 

deformed prostate contours, an organ occupancy map was eventually created.  For 

each patient, a PCA-based PTV was created by thresholding the occupancy map at the 

95% level.  IMRT treatment plans using the PCA-based PTV were then compared to 

plans created using clinically used PTVs.  For a bony-aligned setup, the clinically used 

PTV was created using the van Herk margin formula found in equation (14).  For 

centroid-aligned setup, the clinically used PTV was created using a 5 mm (3 mm 

posterior) expansion.  In bony-aligned setup, the PCA-based PTVs were found to give a 

mean 15.7% (range 10.3-23.2%) reduction in volume when compared with the van Herk 

margin PTV.  For centroid-aligned setup, the mean volume reduction was 27.1% (range 

20.8-37.4%).  Plans were applied to a synthetically generated treatment course (using 

methods outlined in Chapter 1) for each of the 19 patients in the dataset.  In the bony-

aligned setup, the PCA- and van Herk-based margin plans each successfully delivered, 

on average, the prescription dose to at least 97% the target.  The PCA margin plans 

exhibited significant decreases (0.8 - 2.7 Gy) in D50, D30, D20, and D5 to the bladder and 

the D50 to the rectum, while giving a significantly higher dose to the rectum D20 and D5 

(2.6 and 2.3 Gy, respectively).  In the centroid-aligned setup, each plan, on average, 

delivered the prescription dose to at least 97% of the target while significantly 

decreasing (1.8 – 6.8 Gy) all DVH endpoints investigated for the bladder and rectum, 

with the exception of the rectum’s D5, where no significant difference was observed.  No 

loss in target dose coverage was seen for any PTVs used in the VCT, implying that all 

were overly generous.  This is believed to be caused by extended dose falloff in areas 

surrounding the CTV. 
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5.4. Summary 

In summation, in this thesis, I outlined and validated a method for statistically 

modeling the organ motion of patients undergoing definitive radiation therapy.  The 

modeling was performed on an individual basis and then expanded to model the organ 

motion of the patient population.  A straightforward method was developed to apply the 

population modeling in radiation treatment planning to illustrate the clinical utility of 

population as wells as individual patient statistical PCA models.  Using the VCT 

framework, mixed results were found comparing the dosimetric effects of the model 

based treatment planning compared to traditional treatment planning for patients 

aligned on bony anatomy.  For the subtrial comparing clinically used and PCA-based 

PTVs for a simulated prostate centroid alignment, the dosimetric benefit of the PCA-

based PTV margin was more pronounced.   
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Appendix A:  Principal component analysis (PCA) 

PCA is a widely used technique in linear algebra that is designed to extract 

relevant trends and structure from large datasets.  It does so by taking data of a high 

dimensionality, and reducing it to a smaller group that encompasses the majority of the 

variability in the data.  This is done by performing an orthogonal transformation on the 

data so that the greatest variance by any projection lies along the first coordinate, the 

second greatest variance along the second, and so forth.  There are many ways to 

perform this analysis, but the one used in this research will be presented here. 

Input Data 

The formation of the data matrix is essential for a successful implementation of 

PCA.  Suppose we perform a single measurement of M  distinct variables and place 

them in a data vector, 1X  as shown below. 

 

1,1

1,2
1

1,M

x

x

x

 
 
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 
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 

X


  (16) 

Now suppose that a measurement of these same variables is repeated J  times, each 

producing a vector similar to that in equation (16).  The data matrix to describe these 

measurements will now be defined as 
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PCA works on mean subtracted data, so the mean must be computed for each row to 

give the mean value matrix, X . 

 
1

1 J

i
iJ 

 X X   (18) 

The final data matrix operated on by the PCA is 

 1 2MS J     X X X X X X X   (19) 

Covariance Matrix 

The covariance between two random variables is a description of how these 

variables change together.  For the random scalar variables x  and y , the covariance, 

 ,x y , of these two is defined as 

        ,x y E x E x y E y        (20) 

where  E  is the expectation value.  Note that when x y , the covariance is 

equivalent to the variance.  For a group of variables, like those defined in equation (19), 

the M M  sample covariance matrix, Σ , is computed as follows 

 
1

1
T

MS MSJ



Σ X X   (21) 

This matrix gives the covariance between each data point in the data matrix, MSX , in the 

non-diagonal locations and the variances along the diagonal.   
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Orthogonal Transformation 

PCA now requires that the covariance matrix, Σ , undergo an 

eigendecomposition.  Mathematically, this means that the linearly independent 

eigenvectors (also called eigenmodes), v , and the eigenvalues,  , are found that 

satisfy the well-known eigenvalue equation. 

 Σv v   (22) 

Because the covariance matrix is symmetric, the spectral theorem guarantees it to be 

diagonalizable, and therefore contains 1J   associated pairs of eigenvectors and 

eigenvalues.   

The eigenvalues give the relative importance of each eigenvector.  The fraction 

of the variability of the data that can be represented by the associated eigenvector is 

given by 

 1

1

i
Ji

i
i











  (23) 

The eigenvalue with the largest fraction is, by definition, the most-principal 

component, the second largest eigenvalue with the second most-principal component, 

and so forth.  Because of this, the eigenvectors are sorted in descending order by their 

associated eigenvalues.  Typically, only the first L eigenvectors that are needed to 

account for the specified minimum percentage of the spectral variance (generally 90 to 

95%) are kept.  The discarded eigenvectors are likely associated with noise in the 

measurements and not representative of any real data trends. 
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Data Reconstruction 

PCA can be viewed as optimally changing the basis representation of the data 

variability into orthogonal (statistically independent) modes of variation.  However, in 

most cases, the data must be transformed back into the original basis.  This is done 

with the Karhunen-Loève transform, which allows an arbitrary data vector, RX , to be 

reconstructed as a linear combination of the eigenvectors and scaling coefficients   

 
1

L

R i i
i

c


 X v X   (24) 

The scaling coefficients are found using the dot product of the eigenvectors and the 

data that is to be reconstructed. 

  i R ic  X X v   (25) 

This transform can be used to reconstruct the original input data or to model a separate 

measurement not included in the original d data.  If 1J L  , the original input data can 

be reconstructed with no loss of information.   

High Dimensional Data 

The method outlined above becomes cumbersome when M becomes large, due 

in part to the computationally intractable task of diagonalizing a large-scale M M  

covariance matrix, since M  is typically the number of voxels in a 3D image (about 107) 

for this study’s application.  Solutions to this problem have been proposed, such as the 

use of singular value decomposition (SVD), which acts directly on the data matrix, MSX   

and is computationally stable.  However, this work uses a well-known modification of the 

traditional PCA method described above, which is beneficial when J M .75  The 
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details of this method are outlined below.  First, equation (21) is substituted into 

equation (22) 

  1

1
T

MS MSJ



X X v v   (26) 

Now multiply both sides by T
MSX   

    1

1
T T T
MS MS MS MSJ




X X X v X v   (27) 

And define 
T
MSu X v  

 
1

1
T
MS MSJ




X X u u   (28) 

Here, it is easy to see that T
MS MSX X  is the much smaller J J  matrix ( 19J   in this 

study), making the eigenvalue problem much simpler to solve.  Now multiply both sides 

by MSX . 

    1

1
T

MS MS MS MSJ



X X X u X u   (29) 

Looking within the parenthesis, we see that MSX u  is an eigenvector for equation (26).  

Thus, once the eigenvectors, u , are found, the full 3D image eigenvectors, v , can be 

found by 

 MSv X u   (30) 

It is important to note that v  may not be properly normalized.  In the instance where u  is 

normalized, and extra factor of 
 
1

1J 
 is needed for proper normalization of v . 
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Abstract 

Purpose:  To create a statistical population-based model of systematic and random pelvic 

tissue motion in prostate cancer patients; extend the concepts of systematic and random error 

distributions (  and  , respectively) to three dimensions; and demonstrate that the model 

predicts the magnitude, direction, and probability of systematic and random tissue 

displacements over a 5-7 week course of treatment. 25 

Methods:  CT images from 19 patients, each with a single planning image and 8-13 fractional 

images, were used in this study. Patient-specific systematic and random tissue displacements 

were calculated using deformable image registration (DIR) for two different patient setups, a 

bony aligned setup and a prostate-centroid aligned setup.  These vectors were transported to a 

reference coordinate system using inter-patient displacement vector fields (DVFs) mapping 30 

each patient’s planning image to the reference image.  The error introduced by mapping to and 

from the reference image was quantified.  With all patient data in a common coordinate system, 

  and   were computed for each voxel within the prostate, bladder, and rectum.  Principal 

component analysis (PCA) was used to create a statistical model of systematic and random 

tissue displacements.  The PCA modeling error introduced by only including the principal 35 

components representing 95% of the data variance was investigated and reported.  A leave one 

out study was performed to investigate the PCA model’s ability to represent systematic and 

random tissue motion not included in the PCA training data.  Finally, a method for sampling 

synthetic deformations from the PCA models was developed, and organ occupancy maps were 

created and compared between bony and prostrate-centroid aligned patient setups. 40 

Results:  Mapping patient-specific systematic and random tissue errors to and from the 

reference coordinate system introduced an error of about 0.2 mm.  The magnitudes of   and 

  at the reference image prostrate centroid were 1.6 and 1.5 mm, respectively, for prostrate-

centroid aligned patient setup and 4.6 and 4.1 mm for bony aligned setup.  For the PCA 

modeling, 11 eigenmodes were needed to describe 95% of the data variance in the systematic 45 
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motion model, while 33 were needed to describe 95% of the variance in the random motion 

model.  Using the limited number of eigenmodes introduced modeling error in the original data 

of less than 1 mm.  In the leave one out study, systematic errors within the prostate, bladder, 

and rectum not included in the PCA model were reconstructed with absolute mean errors 

between 1 - 2 mm.  Random errors had absolute mean errors between 0.5 - 0.9 mm for each 50 

organ.   

Conclusions:  Systematic and random pelvic tissue positioning errors were modeled using a 

PCA statistical model to within an error of 1-2 mm.  The authors developed, implemented and 

validated a PCA-based technique to determine the principal modes of systematic and random 

organ deformation.  In the population under study, the prostate-centroid aligned technique 55 

reduced the   and   in the areas of clinical interest and gave greater certainty in prostate 

localization compared to bony alignment. 

 

 

Key words 

PCA, prostate cancer, systematic errors, random errors, population model 60 
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1. Introduction 

Organ motion has long since been a challenge across all anatomical sites in 

radiotherapy.  Hereafter, “organ motion” will refer to either the displacement or deformation of 

the anatomy of the treatment day from the planning anatomy.  The magnitudes of the motion 65 

have been extensively studied and reported for intrafraction motion, e.g. lung76-78 and  

pancreas79,80, as well as interfraction motion, e.g., pelvis1,79,81.  Each site presents different 

challenges and requires different motion-management strategies.   

It is often beneficial to separate interfraction organ motion into its systematic and random 

components.  A systematic targeting error is the discrepancy between the anatomy that is 70 

planned and the patient’s mean anatomy throughout their treatment. The daily residual motion 

after being corrected for by the systematic component is random targeting error.  It has become 

common practice to use online image-guided radiotherapy (IGRT) in order to reduce the effect 

of the motion on tumor targeting.  However, current deterministic corrections use only a rigid 

shift of the patient, which cannot account for the residual 3D aspects of the motion, such as soft 75 

tissue deformation.  The current practice for prostate cancer is daily rigid alignment based on 

implanted fiducials.  This still leaves residual systematic and random errors introduced by soft 

tissue deformation.  In most cases, organ rotations are not taken into consideration.  Organs at 

risk (OARs), such as the highly deformable rectum and bladder, are also not taken into account, 

even though their motion could cause higher toxicities than anticipated based on the planning 80 

image.    In lung cancer, tracking cycle-to-cycle variations around the mean is difficult and when 

technically feasible, is limited to translational isocenter position corrections. 

 When direct measurement and incorporation of each day’s organ motion into the plan of 

the day is not feasible, probabilistic treatment planning (PTP) may be an option. Rather than 

correcting for each instance of organ motion, from knowledge of the distribution of organ-motion 85 

errors, PTP endeavors to maximize the probability of achieving specified planning goals.  These 

goals vary, as does the complexity of the planning technique.  The simplest and most widely 
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used PTP method is the clinical target volume (CTV)-to-planning target volume (PTV) 

expansion margin.  To determine the necessary margin, several formulas have been proposed 

based on varying assumptions about the dose coverage to most patients in a population, 90 

including normality of the systematic and random error spatial distributions.  The most well-

known formula was proposed by van Herk, who sought to deliver 95% of the prescription as the 

minimum dose to the CTV for 90% of all patients.39  As input, this formula requires the 

distribution of systematic and random errors of the tumor centroid relative to the planning image 

for the patient population.  This formula is limited by its underlying assumptions, as it treats the 95 

tumor as a rigid body, and does not account for the deformable nature of the tumor and 

completely ignores OARs (organs at risk).  More advanced PTP methods have been developed 

to directly incorporate the probability of a given anatomical instance directly into plan 

optimization.56,82-84  These methods are only as good as their input model describing the 

statistics of the patient’s organ motion.  Currently, there are few fully 3D statistical models of 100 

organ motion that compute the probability of random and systematic instances of anatomy. 

 The goal of this paper is to address this void and to extend the concept of systematic 

and random error from a single tumor centroid to every voxel within the CTV, as well as the 

associated OARs in the male pelvis.  This avoids assumptions of the rigidity/non-rigidity of the 

organs.  This paper applies principal component analysis (PCA) modeling to deformable image 105 

registrations (DIR) in order to statistically model these anatomical systematic and random 

displacements throughout a patient’s treatment course.  DIR produces displacement vector 

fields (DVFs), which quantify the inter-fractional organ motion.  While others have used the PCA 

technique to investigate patient-specific random tissue displacements46,85 and even random 

displacements across a population49, this paper is the first to model both random and systematic 110 

error distributions for the prostate patient population. 

 In this paper, patient-specific systematic and random errors (as described by DVFs), are 

transported to a common coordinate system though inter-patient DIR.  With each patient’s data 
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in a common reference frame, PCA is used to model the principal modes of systematic and 

random organ motion.  115 

2. Methods 

2.1 Patient dataset 

Fan beam computed tomography (CT) images of the male pelvis collected at the 

Netherlands Cancer Institute (NKI) from 19N   patients undergoing definitive external beam 

radiotherapy for prostate cancer were used in this study.  All images were anonymized.  Each 120 

patient was imaged once before treatment and 8-13 times (median 11) throughout the course of 

treatment.   Let Ω ⊂ Թଷ denote the domain of a CT image. Denote ܫ௜,௞: Ω → Թ as the CT image 

of the ith patient and the kth fractional image were 1 i  N  and 0  i  P
i
. By convention, k  0 

denotes the pretreatment CT image and P
i
 denotes the number of fraction images of the ith 

patient.   There were 210 fractional images in this dataset., The 3D prostate, bladder, and 125 

rectum were contoured by a single experienced radiation oncologist on each of these images.  

The cutoff for the superior boundary of the rectum was the inferior edge of the iliosacral joints.  

Protocols for data acquisition were previously reported by Deurloo.57 

For each patient, two different patient setups were investigated.  The first approach aligned 

all fractional images to the planning image by matching a set of bony landmarks.  The second 130 

approach aligned all fractional images to the planning image by aligning the prostate centroid in 

the fractional images to the prostate centroid in the planning image.  The prostrate centroid was 

calculated from physician-drawn contours of each image.  No rotations were considered in the 

initial patient alignment.   

2.2 Deformable image registration 135 

2.2.1 Intra-patient DIR 
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Define    , ,0 :Ω Ωi k i h  as the Eulerian transformation that maps the kth fractional image 

of the ith patient ܫ௜,௞ to the reference image ܫ௜,଴. Denote    , ,0 :Ω Ωi k i u  as the displacement 

vector field (DVF) associated with    , ,0i k ih  where 

            , ,0 , ,0  for i k i i k i   h x x u x x  (1) 140 

Deformable image registration (DIR) was used to determine the transformation.  This was 

done using the SICLE algorithm (small deformation, inverse consistent, linear elastic) using both 

grayscale and contour matching for the bladder, prostate, and rectum.58  SICLE’s objective 

function contains intensity matching, inverse consistency, and regularizing terms.  The intensity 

matching is done using a sum of squares differences using both CT intensities and contour 145 

information.  Contours were incorporated into the algorithm by converting each contour into a 

binary mask image.  The algorithm simultaneously searches for both forward and inverse DVFs 

relating the two input images and their associated contour masks.  The objective function 

contains terms penalizing inverse inconsistent registrations.  A linear elastic regularizing term is 

also included in the objective function.  The transformation is parameterized using a Fourier 150 

basis.  The weighting coefficients of the Fourier bases are the output parameters of SICLE.  The 

algorithm utilizes a multi-resolution approach, starting off minimizing the objective function on a 

coarse grid of the images and iteratively refining the parameters on a finer grid.  The resultant 

DVFs spanned the whole image with voxel sizes of approximately 1.8x1.8x0.3mm. The images 

were initially rigidly aligned using the bony anatomy.  The physician-drawn contours were used 155 

to validate this algorithm.  The output DVFs were used to deform the contours and the Dice 

similarity metric was used to compare the deformed contours with the physician drawn ground 

truth.  This was done for every transformation deforming a fractional to the planning image.  

Over all fractions and all patients, resultant Dice similarity indices for the prostate, bladder, and 

rectum were (mean±SD) 0.92±0.02, 0.95±0.03, and 0.89±0.03 respectively. 160 
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2.2.2 Inter-patient deformable registration and construction of a reference image 

Pooling data across patients to create a statistical model of DVF variability in a population 

of patients requires a common coordinate system.  This was achieved by deforming each 

patient’s reference image ܫ௜,଴ to a population reference image ܫ௥௘௙. In principle, the resulting 

inter-patient transformation  ,i k refh  can be used to transport intra-patient DVFs       ,0, ,0 ii k iu x  165 

derived from different patients onto the coordinate system of ܫ௥௘௙ where they can be indexed 

and compared to one another in a common coordinate system.    

Inter-patient registration of the pelvic anatomy is extremely challenging for most DIR 

algorithms.  This is due to many reasons including differences in anatomy, abutting organs in 

the source image may be separated in the target image or vice versa, and organs may slide 170 

against one another from one image to the next. The SICLE image registration algorithm 

assumes that two images can be registered using a continuous transformation parameterized 

by the 3D Fourier series. As a result, the SICLE algorithm performs poorly in regions where 

abutting organs separate or slide against one another.  In these instances, registrations using all 

organ segmentations simultaneously failed.  Consequently, we performed separate single-organ 175 

deformable registrations for the three central pelvic organs (bladder, prostate, and rectum) to 

allow for the most accurate registration for each organ.         

To derive I
ref

 (with support limited to the three central pelvic structures), SICLE contour 

driven registration was performed to register each patient’s planning contours to the 

corresponding contours of a preselected patient.  This preselected patient was chosen for its 180 

lack of abnormal anatomy (i.e. minimal bowel gas, average prostate size) upon visual 

inspection.  The organ-specific DVFs that map voxels from the preselected I
p,0

 to every other

I
i ,0

, i  p  were then averaged to calculate the mean organ-specific DVF.  The mean DVFs were 

then used to deformably map the central organs from I
p,0  

into I
ref  

, creating a stitched average 
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simulation image, consisting of binary images of the bladder, rectum, and prostate.  We then 185 

deformably registered each of the 19 patient’s central pelvic organs as contoured on planning 

images, one at a time, to the corresponding structures on I
ref

.  This yielded the transformations 

h
i ,0 ref

bladder , h
i ,0 ref

prostate , and h
i ,0 ref

rectum , along with the inverse mappings  ,0
bladder
i refg ,  ,0

prostate
i refg , and 

 ,0
rectum
i refg .  These transformations were subsequently used to transfer systematic and random 

statistical information to and from the average reference patient, where the data can be pooled 190 

and compared. 

 

Figure 1.  The creation of the reference image.  Patient planning images are first registered to a single patient’s 
planning image, from which the reference image is then created using the mean deformation. 

2.3 Development of a statistical model of deformed anatomies 195 

2.3.1 Systematic and random anatomical deformations 

We assume that each patient’s DVF describing the mapping of a fractional anatomy to its 

planning anatomy,      ,0, ,0 ii k iu x , is the sum of systematic and random components,  ,0i iu x  

and      ,0, ,0 ii k iΔu x , respectively.  The systematic component is defined as the DVF which 
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maps each voxel from its planning image, I
i ,0

 to its location, averaged over its positions in each 200 

daily treatment image, I
i ,k

. 

 u
i

x
i ,0   1

P
i

u
i ,k  i ,0  x

i ,0 
k1

Pi

   (2) 

Each patient has a single  ,0i iu x .  The day-to-day fluctuations of anatomical deformations 

about  ,0i iu x  are represented by      ,0, ,0 ii k iΔu x , which describes the k-th fraction offset of 

each voxel ,0ix  from the planning image in treatment fraction k from its mean location,  ,0i iu x , 205 

during the treatment course. 

              ,0 ,0 ,0, ,0 , ,0i i i ii k i i k i  Δu x u x u x   (3) 

For brevity,  ,0i iu x  and      ,0, ,0 ii k iΔu x , are hence referred to as “systematic DVF 

component” and “random DVF component,” respectively.  These quantities are 3D 

generalizations of the systematic and random setup error concepts utilized in the margin 210 

formula by van Herk.39 

2.3.2 Transport of patient-specific vector fields into reference coordinate system 

The systematic and random DVF components,  ,0i iu x  and      ,0, ,0 ii k iΔu x , which are 

functions of the patient-specific simulation-image coordinate systems, are transported organ-by-

organ to the reference coordinate system, refx , using the inter-patient DVFs,    ,0
bladder

refi refu x , 215 

   ,0
prostate

refi refu x , and    ,0
rectum

refi refu x .  This is done by treating the systematic and random 

components as vector-valued images and deforming their vector fields with the inter-patient 

DVF.   

       ,
,0

ref prostate prostate
i ref i ref refi ref u x u x u x   (4) 

This is done for all organs and for the systematic and random components.   220 
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As described below, the resultant components were “stitched” together in the reference 

coordinate system to form a single systematic or random error, with support limited to the three 

pelvic structures.  The single-organ systematic or random error’s support was taken to be any 

voxels within the associated organ, plus a 1 cm margin around the organ.  The margin was 

necessary to avoid interpolation errors at the organ surfaces introduced when deforming the 225 

reference contours.  The stitching for the systematic and random errors is given mathematically 

below.  

  
 
 
 

,

, ,

,

if Rectum+1cm

if Bladder+1cm

if Prostate+1cm

rectum ref
i ref ref

union ref bladder ref
i ref i ref ref

prostate ref
i ref ref

 
 




u x x

u x u x x

u x x

  (5) 

and 

  
 
 
 

,
,

, ,
, ,

,
,

if Rectum+1cm

if Bladder+1cm

if Prostate+1cm

rectum ref
i j ref ref

union ref bladder ref
i j ref i j ref ref

prostate ref
i j ref ref

 
  

 

u x x

Δu x u x x

u x x

  (6) 230 

Volumes where these margins overlapped were handled using a prioritization.  The prostate 

took first priority, the bladder second, and the rectum third.  In all, there are N  different 

systematic errors and 
1

210
N

i
i

P


  random errors, all in the reference coordinate system. 

2.4 Inverse consistency 

In order for a population model to have value, information extracted from it in the reference 235 

coordinate system (e.g. randomly sampled DVFs or summary statistics) must be mapped back 

to a patient’s local coordinate system.  The process of mapping the systematic and random 

components to and from the reference coordinate system introduces error, due to the DVF 

stitching and the fact that inter-patient transformations are not exactly inverse consistent.  The 
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impact of these two factors was tested as a whole, and will be referred to subsequently as the 240 

“inverse consistency error”. 

In order to quantify inverse consistency error, the systematic and random errors were 

mapped to the reference frame, then immediately mapped back to the local patient’s frame, 

where they were compared with original. 

 

        

 

      

, ,
, ,0 ,0,0

,0 ,0 ,0,0

, ,
, ,0 ,0 ,0 ,0,0

,

for each , find corresponding ( )

( )

 where prostate, bladder, rectum,

o o o ref o patient
i IC i i ref i ii ref

o
i ref i iref i

o o ref o o patient
i IC i i i i i iref i

o l
i o







 

 

  



δ x g u x u x

x x u x x

δ x u u x x u x

u  or union and = patient or ref coordinate system l

  (7) 245 

where “organ” is a placeholder for the prostate, bladder, and rectum, as each organ is done 

separately.  To quantify inverse consistency error, the mean and standard deviation of 

 , ,0
o
i IC iδ x  was averaged over all voxels within the organ for each patient separately, and over 

the population of patients. 

2.5 Quantifying the statistics of systematic and random voxel displacements 250 

The systematic and random error components of the tissue displacement must be 

transported to the reference coordinate system in order to get a statistical characterization of the 

entire patient population.  The characterization is done by generalizing the well known concepts 

of group mean, systematic error ( ), and random error ( ), introduced by van Herk to model 

statistical fluctuations of setup error, to three dimensions.  255 

The group mean,  refM x , is defined as 

    ,

1

1 N
union ref

ref i ref
iN 

 M x u x   (8) 
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Generalizing the classical definition of van Herk, which was limited to the GTV centroid, we 

define the systematic tissue displacement error,  refΣ x , as a function of location, refx , in the 

reference image, by 260 

       2
,

1

1

1

N
union ref

ref i ref ref
iN 

 
 Σ x u x M x   (9) 

Similarly, the random error,  refσ x , is calculated as the root mean square over all patients of 

the standard deviation of each patient’s daily tissue displacements.  Mathematically, it is defined 

as 

     2
,

,
1 1

1 1

1

iPN
union ref

ref i k ref
i kiN P 


 σ x Δu x   (10) 265 

 

2.6 PCA for constructing probability density functions (PDFs) of deformed anatomies 

The goal of this statistical model is to quantify the amount of uncertainty in tissue 

displacements across a population of patients.  This knowledge is potentially useful when 

designing a plan resistant to such uncertainties for a patient whose individual tissue 270 

displacements are unknown a priori.  Equations (8)-(10), above, assume that each voxel moves 

independently of its neighbors.  Obviously, voxels within an organ move coherently, giving rise 

to significant voxel-to-voxel correlations.  The Fourier transformation parameterization and linear 

elastic regularization present in the DIR used in this work guarantee this correlation.  To 

incorporate these correlations, the statistics of systematic and random errors were modeled 275 

using the PCA technique in the reference coordinate system. Supposing there are L voxels in 

the image, we can define the 3L  N matrix of population mean-subtracted systematic data 

matrices are calculated as  



D Vile et al.: Population modeling of systematic and random tissue errors 

115 
 

  
1 1 1

, 1

1

( ) ( )

( ), , ( ), , ( )

( ) ( )
ref

N
sys sys

i i N

L N L

x x

x x

 
     
  

x

Δ Δ

D D Δ x Δ x Δ x

Δ Δ


   


  (11) 

where    ,
1 1( ) union ref

ref Δ x u x M x .  The columns of sysD  are the group-mean subtracted 280 

patient-specific systematic displacements, while the rows are mean-subtracted systematic 

displacements of a specific voxel.  The same is done to create the random data matrix, randD .  

From these, their respective covariance matrices are calculated.  The covariance matrix is a 

measure of each voxel’s correlation to the others, and is calculated by 

  1

1

Tsys sys sys

N



C D D   (12) 285 

Similarly, we can define the  1
3

N

ii
P L


   matrix    , 1, , , 1, ,rand

i j ref ij P i N    D Δu x    

and the corresponding covariance matrix 

  
1

1 Trand rand rand
N

i
i

P





C D D

 

 (13) 

PCA is an orthogonal transformation, or eigendecomposition, of the covariance matrix, which 

seeks to diagonalize the matrix.   290 

 
sys sys sys sys

l l l

rand rand rand rand
l l l









C v v

C v v
  (14) 

 and sys sys
l l v denote the lth of N nonzero eigenvalues and eigenvectors, respectively. In practice, 

the 3 3L L  matrices are too large to invert.  Hence equations (12) and (13) are multiplied by 

    or 
T Tsys randD D   transforming the covariance matrix to easily invertible 19x19 or 212x212 

matrices and with 3 L  eigenvector matrices.75  The result of each decomposition is an 295 

orthonormal set of basis eigenvectors, sys
lv  and rand

lv , that satisfy the eigenvector equation (14).  
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In principle, any random or systematic deformed instance of 3D anatomy,  refu x , can be 

expressed as a linear combination of these eigenvectors and scalar expansion coefficients, lc .   

    
1

1 sysL
sys

ref l l ref
l

c
N 

 u x v M x   (15) 

In equation (15), sysL  represents the number of eigenmodes necessary to account for 95% of 300 

the variance in the data.  Typically, sysL N , reducing the dimensionality of the problem.  The 

eigenvectors (or eigenmodes) are ordered so that the first principal component, with the largest 

l accounts for the most variance possible in the data.  The second mode is the orthogonal 

vector that accounts for the next largest contribution to variance, and so forth. 

2.7 PCA modeling error 305 

By using a limited number of eigenmodes, some amount of error is introduced when 

reconstructing the original set of systematic and random spatial distributions.  To quantify this 

error, equation (15) and its random counterpart was used to reconstruct each systematic and 

random DVF using sysL  or randL   eigenmodes.  In the refx coordinate system, each 

reconstructed displacement field was compared to the original DVF, and the arithmetic mean 310 

and standard deviation of the voxel-by-voxel differences calculated for each organ.  For each 

patient, the discrepancies were further averaged over the 8-13 random component DVFs 

associated with each patient.    

2.8 Leave one out study 

For the PCA model to be useful clinically, it must be able to accurately describe systematic 315 

and random displacement distributions from patients that were not part of the training set. 

Nineteen different systematic and random DVF PCA models were built, each using data from 18 

patients by excluding each patient in turn.  The scaling expansion coefficients required to 

approximate the patient’s systematic and random errors in equation (15) were calculated by  
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    sys
l l ref refc   v u x M x      (16) 320 

Then, the systematic DVFs for the omitted patient were estimated using equation (15), with 

the random DVFs estimated similarly.  This process was repeated for the other patients, 

creating 19 different models in total, each created using data from the other patients.  

Differences between the DVFs for the 19 omitted patients as reconstructed by PCA and directly 

calculated by SICLE were evaluated separately for each organ in each patient.  The mean and 325 

standard deviation of the errors were reported. 

2.9 Randomly sampling PCA PDFs and organ occupancy maps 

A useful application of the PCA statistical models is the creation of organ occupancy maps.  

These maps show the probability of an organ of interest occupying each voxel in a patient’s 

simulation image, taking into account both random and systematic anatomy deformation.  To 330 

create these occupancy maps, samples of systematic and random DVFs must be randomly 

drawn from the PCA model and then added together in order to create a synthetic deformation.  

This is done by creating and sampling from a probability density function (PDF) of the expansion 

coefficients, lc , associated with each eigenvector in both the systematic and random 

displacement models.  The PDF is created from the histogram of eigenvalues (19 and 210 335 

values for systematic and random DVFs, respectively, for each eigenmode) by the well-known 

method of kernel density estimation.60,61  Practically, this is done by using equation (16) to 

compute the expansion coefficients, , 1, ,i
lc i N   for each of the N DVFs in the training set.  All 

of the coefficients associated with a given eigenvector are grouped together and each is 

represented by a Gaussian kernel: 340 

    2

22
1

1
exp

22

iN
l

l
i

c c
p c

bN b 

   
 
 

   (17) 
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where b is an adjustable bandwidth parameter set according to the recommendations in 

Silverman.62  A typical example is shown in Figure 2.  This is a well known technique for 

estimation of the underlying PDF when used in conjunction with PCA.86  This technique has 

been previously applied in the estimation of DIR uncertainties.59   345 

 

Figure 2.  An example of a PDF built through kernel density estimation (KDE).  The final PDF (dashed purple) is 
created through superposition of many Gaussian kernels taken from the training data coefficients.  This PDF 
corresponds to the first eigenmode associated with the prostrate-centroid aligned systematic displacements. 

It is simple and efficient to sample expansion coefficients to use in equation (15) for 350 

creating synthetic systematic and random tissue DVFs, which when added together, form a 

synthetic deformation of the anatomy.  This deformation is then used to deform the reference 

anatomy, yielding a possible anatomical instance.  This process is repeated 1000 times, and the 

deformed anatomies are then averaged for each voxel, giving the probability of a given organ 

occupying that voxel on a given treatment day.  This is done for both bony and prostrate-355 

centroid aligned setups, and the resultant occupancy maps were compared. 
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3. Results 

3.1 Inverse consistency 

The results of the inverse consistency on the systematic error are shown for each patient in 

Figure 3.  This shows the mean inverse consistency error,  , ,0
organ
i IC iδ x  of the inter-patient 360 

transformations for transporting patient specific systematic error DVFs.  Table 1 gives the mean 

and standard deviations of the errors across all patients.  In all patients, the mean error is 0.2 

mm or less resulting in submillimeter discrepancies with standard deviations of 0.1 – 0.3 mm 

when averaged over patients.  This suggests that the lower limit of meaningful DVF error 

modeling is about 0.2 mm with the SICLE code.  365 
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Figure 3.  The inverse consistency error for the systematic error in the prostate (blue), bladder (red), and rectum 
(green) of each patient in the left-right (LR), anterior-posterior (AP), superior-inferior (SI) directions as well as the 
error magnitude.  The dot represents the voxel-by-voxel mean error within the organ with the error bars representing 
one standard deviation. 370 
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Table 1. Mean and standard deviation of the inverse consistency results for the population modeling of both 
systematic and random deformations in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) 
directions. 

  LR (mm) AP (mm) SI (mm) 

Systematic 

Prostate 0.01±0.08 0.00±0.12 0.01±0.09 

Bladder 0.01±0.12 0.02±0.13 0.01±0.11 

Rectum -0.02±0.19 0.00±0.22 0.01±0.10 

Random 

Prostate 0.00±0.01 0.00±0.07 0.00±0.09 

Bladder 0.00±0.03 0.00±0.11 0.00±0.16 

Rectum 0.00±0.04 0.00±0.11 0.00±0.10 

 375 

3.2 Spatial distribution of systematic and random dispersion parameters 

The single-voxel group mean, M , and standard deviations, Σ  and σ of the population 

distribution of systematic and random voxel displacements as a function of  error maps are 

shown in Figure 4 when the prostate centroids on each day-of-treatment image set is assumed 

aligned with the simulation centroid.  At the prostate centroid, the magnitudes of the group 380 

mean, systematic error, and random errors are 0.4, 1.6, and 1.5 mm respectively.  One would 

expect these quantities to be approximately zero.  However, this work aligns on the prostate 

centroid, and due to asymmetric deformation of the prostate, one can expect that DIR will not 

necessarily map the day-of-treatment centroids onto the simulation image centroid.  These 

errors increase with increasing distance from the point of alignment, with standard deviations as 385 

large as 10 mm in the bladder base and near the rectal-sigmoid colon junction due to variations 

in bladder and rectal filling. 
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  LR AP SI 

M
 

 

Σ  

 

σ  

 

Figure 4.  Sagittal views of the population mean, M , systematic error standard deviation, Σ , and random error 
standard deviation , σ , in mm for the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions.  390 
The values shown here are for daily patient alignment of the prostate centroid.  The characterization maps are in the 
reference coordinate system, but overlaid on a sample patient anatomy to give a sense of location within the pelvis. 

 The results for the bony alignment setup are given in Figure 5.  At the prostate centroid, 

the group mean, systematic error standard deviation, and random error standard deviation 

magnitudes are 1.7, 4.6, and 4.1 mm respectively.  These are, as expected, larger than the 395 

corresponding values for the prostate centroid setup case.  Figure 5 shows a modest trend 

towards reduced tissue deformation near adjacent bony structures, although some large errors 

are evident, e.g., AP random tissue displacement in bladder neck near the pubic symphysis, 

indicating that distances between bladder and rectal surfaces proximal to bones varies 
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significantly. For the prostate, the largest uncertainty is the AP location of the prostate base, 400 

which has a  of about 8 mm.   

  LR AP SI 

M
 

 

Σ  

 

σ  

 

Figure 5. Sagittal views of the group mean, M  systematic error, Σ , and random error, σ , standard deviations in 
mm for the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions.  The values shown here are 
for daily online bony alignment.  These quantities are mapped in the reference coordinate system, but overlaid on a 
sample patient anatomy to give a sense of location within the pelvis. 405 

 

3.3 PCA modeling error 

The PCA modeling error is shown (see Figure 6 and Table 2) for only the online prostrate-

centroid alignment case.  In order to account for 95% of the variance in the data, 11sysL   and 

33randL  eigenmodes were needed.  Over all patients, the mean and standard deviations of the 410 

PCA reconstruction error for systematic and random displacements is given in Table 2.  The 
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mean PCA reconstruction errors were all near zero with standard deviations of approximately 

0.5 mm and exceed 1 mm only for a very small number (3.8% for systematic) voxels.  In 

general, PCA modeling errors are larger than inverse-consistency errors.  

 Systematic Random 

LR 

AP 

SI 

Figure 6:  Mean difference between PCA reconstructions and original systematic component DVF along each axis.  415 
For each patient, the dots represent the mean error and the error bars show the standard deviation.  The data shown 
here is for prostrate-centroid aligned data. 
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Table 2.  Mean and standard deviation of the PCA reconstruction error for both the systematic and random 
deformations in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions, averaged over 420 
patients as well as voxels and daily treatment images for the case of prostrate-centroid alignment.  

  LR (mm) AP (mm) SI (mm) 

Systematic 

Prostate 0.00±0.33 0.00±0.54 0.00±0.33 

Bladder 0.00±0.51 0.00±0.50 0.00±0.40 

Rectum 0.00±0.82 0.00±0.78 0.00±0.46 

Random 

Prostate -0.01±0.21 0.00±0.36 -0.01±0.23 

Bladder 0.04±0.63 0.04±0.85 0.03±0.68 

Rectum -0.03±0.65 0.09±0.79 -0.03±0.48 

 

3.4 Leave one out study 

In order to reconstruct the systematic displacements, 19 PCA models were created for the 

leave one out study.  As with the PCA modeling error results, only the online prostrate-centroid 425 

alignment case is presented here, as results were similar for the bony alignment case.  For most 

PCA models, either 10-11 or 32-33 principal components, respectively, were necessary to 

account for 95% of the variance in the systematic and random displacement input data. The 

average error is quite small, but with significant patient-to-patient variability.  The largest mean 

errors (about 2 mm) are bladder and rectal systematic errors.  Leave one out errors are much 430 

smaller for the random displacements than those for the systematic, implying that a larger 

dataset might be necessary to fully describe the systematic variability in the pelvis. 
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 Systematic Random 

LR 

AP 

SI 

Figure 7:  Results of the leave one out study for both systematic and random displacements in the case of the online 
prostrate-centroid alignment case, for each of the “left-out” patients.  The arithmetic means and standard deviations 435 
over organ voxels between the actual DVF and that inferred from equations (16) and (15) are shown. 
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Table 3.  Mean and standard deviations of the PCA modeling errors evaluated over the 19 “left out” patients in the 
leave one out study for the online prostrate-centroid alignment protocol. The mean absolute error is given below the 440 
grand mean and standard deviations.   

  LR (mm) AP (mm) SI (mm) 

Systematic 

Prostate 0.01±0.81 

0.84 

-0.05±1.25 

1.42 

-0.03±0.87 

1.00 

Bladder -0.26±2.27 

1.19 

0.01±2.08 

1.18 

0.01±1.33 

0.97 

Rectum -0.05±1.22 

2.11 

0.12±1.31 

1.83 

-0.11±1.02 

1.31 

Random 

Prostate 0.00±0.71 

0.55 

0.00±0.87 

0.76 

0.00±0.58 

0.54 

Bladder 0.00±1.14 

0.67 

0.00±1.17 

0.72 

0.00±0.80 

0.52 

Rectum 0.00±0.89 

0.87 

0.00±0.94 

0.91 

0.00±0.68 

0.62 

 

3.5 Organ occupancy maps 

The organ occupancy maps were calculated for both the prostrate-centroid and bony 

aligned setup are presented in Figure 8.  Using prostrate-centroid alignment, the prostate’s 445 

position is known with much greater certainty.  The bony alignment shows variable uncertainty 

in the prostate’s position over 2 cm in the anterior and posterior directions, compared to 7 mm in 

the prostrate-centroid aligned patient. For the bladder and rectum in the prostrate-centroid 

aligned setup, the organ can be located with greater certainty in regions bordering the prostate, 

while the bony aligned setup has greater certainty in their location near bony anatomy. 450 



 
Axial Sagittal 

Bony Aligned Centroid Aligned Bony Aligned Centroid Aligned 

Prostate 

 

Bladder 

 

Rectum 

 

Figure 8:  Organ occupancy maps for the prostate, bladder, and rectum for both bony and prostrate-centroid aligned setup.  The colormap corresponds to the 
probability of a given voxel containing the organ on a given day.  These are in the reference coordinate system and are overlaid on a sample patient for ease of 
viewing
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4. Discussion 

This paper generalizes the concept of systematic and random displacement errors to 

three-dimensional space by calculating them on a voxel by voxel basis.  Previously, clinical 

practice was limited to calculating these displacements and their statistical distributions at a 

single point, generally the prostate centroid or an implanted marker.   The assumption is that the 

prostate moves as a rigid body.  This assumption completely ignores tissue deformation.  This 

work shows general agreement with the literature on the values of   and   at the prostate 

centroid, as shown in Table 4 for a bony aligned setup.  However, our 3D calculation shows that 

these numbers are not consistent throughout the prostate, and can vary considerably near the 

prostate surface.  These differences can potentially create a geometric miss to certain portions 

of the prostate during the course of treatment.  This work also includes the motion patterns of 

the bladder and rectum. 

Table 4.  Comparison of this study’s   and   values at the prostate centroid with selected values previously 
reported in the literature.  All values are in mm and are for a bony aligned setup.  Abbreviations:  LR – left/right, AP 
– anterior/posterior, SI – superior/inferior. 

     
Study LR AP SI LR AP SI 
van Herk87 0.9 2.7 1.7 0.9 2.7 1.7 
Beltran81 0.9 3.5 3.0 1.2 2.8 2.0 
Current 
study 

0.9 4.0 2.4 1.2 2.5 3.3 

 

 While this study included 210 sets of random tissue displacements, only 19 systematic 

tissue displacements were available for this paper.  Obviously, our statistical model is limited by 

this input data in the types of deformations that it can represent.  A leave one out study was 

conducted to try to quantify the ability of the PCA models to correctly describe the systematic 

and random organ motion of patient’s not in the PCA training set.  This study suggested that the 

systematic organ motion could be accurately described to within about 1.5 mm.  This suggests 

that the 19 systematic error samples used in this study might be too small to fully model all 
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possible modes of systematic motion.  The random organ motion could be modeled to a much 

better accuracy.   

 Accurate inter- and intra-patient DIRs are necessary in building the statistical model.  

The intra-patient registrations were done using both grayscale and contour information of the 

fractional images.  These registrations were validated using a Dice metric.  Inter-patient 

registrations were a much more difficult process to deal with.  Using a similar process to the 

intra-patient registrations, some of our registrations failed to converge on a final DVF.  These 

were due to the large anatomical differences between the patients.  As the DIR algorithm used 

in this study cannot model DVF discontinuities due to use of Fourier series basis functions, we 

adopted an heuristic approach, i.e., independently registering the organs using only contour 

information.  This approach correctly modeled individual organ shape and relative positions to 

one another and the bony pelvis of each patient.  However, uncontoured structures, e.g., pelvic 

lymph nodes, vascular bundles, seminal vesicles, and pelvic bones, are not included.  Nor do 

our registrations have the benefit of matching soft-tissue features. This makes our results 

dependent on the regularization (linear-elastic constitutive law) of our DIR algorithm and its 

ability to deform the organs in a realistic manner.  For future work, a finite element based DIR 

would appear to be a better option, as it can produce DVFs with support limited to the organs of 

interest. 

 Inter-patient DIR is necessary in this work to transport DVFs in a patient’s coordinate 

system to the coordinate system of the reference patient.  This need to transport changes in a 

single patient to a reference patient or template is a current topic of study called “parallel 

transport”.88,89  The idea is to transport vectors along geodesics while retaining vector 

parallelism.  In the future, these methods could produce a better method for pooling the 

statistics in this study. 

 While not directly demonstrated in this work, our statistical model has several possible 

clinical applications for improving treatment.  PTP is perhaps the most important such 
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application. Conceptually, our PCA model is used to randomly select an ensemble of systematic 

and randomly deformed instances of a patient’s anatomy, enabling the optimizer to select the 

MLC leaf sequence that maximizes the fraction of deformed instances of anatomy meeting the 

treatment goals and constraints.56  In order to do this, some knowledge of the distribution of 

displacements must be known a priori.  Our statistical model gives detailed information about 

this population distribution over all voxels within the three organs of interest.   

 A more straightforward application of this work is construction of a patient PTV that 

represents a more optimal tradeoff between target coverage and normal tissue dose.  Currently, 

isotropic or pseudo-isotropic margins are used to create the PTV, many times based off of 

margin formulas.  Also, the van Herk formula cannot be directly applied to the prostrate-centroid 

alignment protocol, as the   and   parameters would be zero.  PCA population modeling can 

create anisotropic margins for any patient setup that would provide more coverage in areas of 

larger deformation and less coverage in areas of minimal deformation.  Synthetic systematic 

and random displacements could be sampled from our model, transferred to the patient’s 

planning image coordinate system, and used to deform their planning contours.  An organ 

occupancy diagram can be created for the prostate similar to those presented in this work.  This 

diagram could be thresholded (covering, for example, 95% of all anatomical variations), and this 

volume could be used as the PTV. 

5. Conclusion 

The purpose of this work was to create a statistical population model of systematic and 

random tissue motion. Patient-specific systematic and random displacements were transported 

to a reference coordinate system.  In this reference coordinate system, the traditional measures 

of systematic and random error distributions,   and  , were calculated for the prostate, 

bladder, and rectum on a voxel by voxel basis for bony and prostrate-centroid aligned patient 



D Vile et al.: Population modeling of systematic and random tissue errors 
 
 

132 
 

setups.  A PCA technique was implemented to determine the principal modes of systematic and 

random deformation.   
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