923 research outputs found

    O stars effective temperature and HII regions ionization parameter gradients in the Galaxy

    Full text link
    Extensive photoionization model grids are computed for single star HII regions using stellar atmosphere models from the WM-basic code. Mid-IR emission line intensities are predicted and diagnostic diagrams of [NeIII]/[NeII] and [SIV]/[SIII] excitation ratio are build, taking into account the metallicities of both the star and the HII region. The diagrams are used in conjunction with galactic HII region observations obtained with the ISO Observatory to determine the effective temperature Teff of the exciting O stars and the mean ionization parameter U. Teff and U are found to increase and decrease, respectively, with the metallicity of the HII region represented by the [Ne/Ne_sol] ratio. No evidence is found for gradients of Teff or U with galactocentric distance Rgal. The observed excitation sequence with Rgal is mainly due to the effect of the metallicity gradient on the spectral ionizing shape, upon which the effect of an increase in Teff with Z is superimposed. We show that not taking properly into account the effect of metallicity on the ionizing shape of the stellar atmosphere would lead to an apparent decrease of Teff with Z and an increase of Teff with Rgal.Comment: Accepted in Ap

    Tramp Novae Between Galaxies in the Fornax Cluster: Tracers of Intracluster Light

    Full text link
    We report the results of a survey for novae in and between the galaxies of the Fornax cluster. Our survey provides strong evidence that intracluster novae exist and that they provide a useful, independent measure of the intracluster light in Fornax. We discovered six strong nova candidates in six distinct epochs spanning eleven years from 1993 to 2004. The data were taken with the 4m and the 1.5m telescopes at CTIO. The spatial distribution of the nova candidates is consistent with \sim16-41% of the total light in the cluster being in the intracluster light, based on the ratio of the number of novae we discovered in intracluster space over the total number of novae discovered plus a simple completeness correction factor. This estimate is consistent with independent measures of intracluster light in Fornax and Virgo using intracluster planetary nebulae. The accuracy of the intracluster light measurement improves with each survey epoch as more novae are discovered.Comment: 30 pages, 10 figures, accepted for publication in the Astrophysical Journal (Sep 9, 2004). Version 2: Added references. Full resolution versions of figures 1-7 and 10 can be found at http://astrowww.phys.uvic.ca/~neill/fnx

    Is There a Fundamental Line for Disk Galaxies?

    Get PDF
    We show that there are strong local correlations between metallicity, surface brightness, and dynamical mass-to-light ratio within M33, analogous to the fundamental line of dwarf galaxies identified by Prada & Burkert (2002). Using near-infrared imaging from 2MASS, the published rotation curve of M33, and literature measurements of the metallicities of HII regions and supergiant stars, we demonstrate that these correlations hold for points at radial distances between 140 pc and 6.2 kpc from the center of the galaxy. At a given metallicity or surface brightness, M33 has a mass-to-light ratio approximately four times as large as the Local Group dwarf galaxies; other than this constant offset, we see broad agreement between the M33 and dwarf galaxy data. We use analytical arguments to show that at least two of the three fundamental line correlations are basic properties of disk galaxies that can be derived from very general assumptions. We investigate the effect of supernova feedback on the fundamental line with numerical models and conclude that while feedback clearly controls the scatter in the fundamental line, it is not needed to create the fundamental line itself, in agreement with our analytical calculations. We also compare the M33 data with measurements of a simulated disk galaxy, finding that the simulation reproduces the trends in the data correctly and matches the fundamental line, although the metallicity of the simulated galaxy is too high, and the surface brightness is lower than that of M33.Comment: 14 pages, 14 figures (5 in color). Accepted for publication in Ap

    Spatially resolved integral field spectroscopy of the ionized gas in IZw18

    Get PDF
    We present a detailed 2D study of the ionized ISM of IZw18 using new PMAS-IFU optical observations. IZw18 is a high-ionization galaxy which is among the most metal-poor starbursts in the local Universe. This makes IZw18 a local benchmark for understanding the properties most closely resembling those prevailing at distant starbursts. Our IFU-aperture (~ 1.4 kpc x 1.4 kpc) samples the entire IZw18 main body and an extended region of its ionized gas. Maps of relevant emission lines and emission line ratios show that higher-excitation gas is preferentially located close to the NW knot and thereabouts. We detect a Wolf-Rayet feature near the NW knot. We derive spatially resolved and integrated physical-chemical properties for the ionized gas in IZw18. We find no dependence between the metallicity-indicator R23 and the ionization parameter (as traced by [OIII]/[OII]) across IZw18. Over ~ 0.30 kpc^2, using the [OIII]4363 line, we compute Te[OIII] values (~ 15000 - 25000 K), and oxygen abundances are derived from the direct determinations of Te[OIII]. More than 70% of the higher-Te[OIII] (> 22000 K) spaxels are HeII4686-emitting spaxels too. From a statistical analysis, we study the presence of variations in the ISM physical-chemical properties. A galaxy-wide homogeneity, across hundreds of parsecs, is seen in O/H. Based on spaxel-by-spaxel measurements, the error-weighted mean of 12 + log(O/H) = 7.11 +/- 0.01 is taken as the representative O/H for IZw18. Aperture effects on the derivation of O/H are discussed. Using our IFU data we obtain, for the first time, the IZw18 integrated spectrum.Comment: Accepted for publication in MNRAS, 13 pages, 10 figures, 4 table

    The extended HeII4686-emitting region in IZw18 unveiled: clues for peculiar ionizing sources

    Get PDF
    New integral field spectroscopy has been obtained for IZw18, the nearby lowest-metallicity galaxy considered our best local analog of systems forming at high-z. Here we report the spatially resolved spectral map of the nebular HeII4686 emission in IZw18, from which we derived for the first time its total HeII-ionizing flux. Nebular HeII emission implies the existence of a hard radiation field. HeII-emitters are observed to be more frequent among high-z galaxies than for local objects. So investigating the HeII-ionizing source(s) in IZw18 may reveal the ionization processes at high-z. HeII emission in star-forming galaxies, has been suggested to be mainly associated with Wolf-Rayet stars (WRs), but WRs cannot satisfactorily explain the HeII-ionization at all times, in particular at lowest metallicities. Shocks from supernova remnants, or X-ray binaries, have been proposed as additional potential sources of HeII-ionizing photons. Our data indicate that conventional HeII-ionizing sources (WRs, shocks, X-ray binaries) are not sufficient to explain the observed nebular HeII4686 emission in IZw18. We find that the HeII-ionizing radiation expected from models for either low-metallicity super-massive O stars or rotating metal-free stars could account for the HeII-ionization budget measured, while only the latter models could explain the highest values of HeII4686/Hbeta observed. The presence of such peculiar stars in IZw18 is suggestive and further investigation in this regard is needed. This letter highlights that some of the clues of the early Universe can be found here in our cosmic backyard.Comment: 6 pages, 3 figures. Accepted for publication in ApJ Letter

    Carbon Stars and other Luminous Stellar Populations in M33

    Full text link
    The M33 galaxy is a nearby, relatively metal-poor, late-type spiral. Its proximity and almost face-on inclination means that it projects over a large area on the sky, making it an ideal candidate for wide-field CCD mosaic imaging. Photometry was obtained for more than 10^6 stars covering a 74' x 56' field centered on M33. Main sequence (MS), supergiant branch (SGB), red giant branch (RGB) and asymptotic giant branch (AGB) populations are identified and classified based on broad-band V and I photometry. Narrow-band filters are used to measure spectral features allowing the AGB population to be further divided into C and M-star types. The galactic structure of M33 is examined using star counts, colour-colour and colour-magnitude selected stellar populations. We use the C to M-star ratio to investigate the metallicity gradient in the disk of M33. The C/M-star ratio is found to increase and then flatten with increasing galactocentric radius in agreement with viscous disk formation models. The C-star luminosity function is found to be similar to M31 and the SMC, suggesting that C-stars should be useful distance indicators. The ``spectacular arcs of carbon stars'' in M33 postulated recently by Block et al. (2004) are found in our work to be simply an extension of M33's disk.Comment: 20 pages, 20 figures. Accepted for publication in The Astronomical Journa

    The Spatial Distribution of Atomic Carbon Emission in the Giant Molecular Cloud NGC 604-2

    Full text link
    We have mapped a giant molecular cloud in the giant HII region NGC 604 in M33 in the 492 GHz ^3P_1 -- ^3P_0 transition of neutral atomic carbon using the James Clerk Maxwell Telescope. We find the distribution of the [CI] emission to be asymmetric with respect to the CO J=1--0 emission, with the peak of the [CI] emission offset towards the direction of the center of the HII region. In addition, the line ratio I_{[CI]}/I_{CO} is highest (~ 0.2) facing the HII region and lowest (< 0.1) away from it. These asymmetries indicate an edge-on morphology where the [CI] emission is strongest on the side of the cloud facing the center of the HII region, and not detected at all on the opposite side This suggests that the sources of the incident flux creating C from the dissociation of CO are the massive stars of the HII region. The lowest line ratios are similar to what is observed in Galactic molecular clouds, while the highest are similar to starburst galaxies and other regions of intense star formation. The column density ratio, N(C)/N(H_2) is a few times 10^{-6}, in general agreement with models of photodissociation regions.Comment: Accepted for publication in ApJ. 8 pages, 5 figures, 3 table

    The He abundance in the metal-deficient blue compact dwarf galaxies Tol 1214-277 and Tol 65

    Full text link
    We present high-quality Keck telescope spectroscopic observations of the two metal-deficient blue compact dwarf (BCD) galaxies Tol 1214-277 and Tol 65. These data are used to derive the heavy-element and helium abundances. We find that the oxygen abundances in Tol 1214-277 and Tol 65 are the same, 12+logO/H=7.54+/-0.01, or Zsun/24, despite the different ionization conditions in these galaxies. The nitrogen-to-oxygen abundance ratio in both galaxies is logN/O=-1.64+/-0.02 and lies in the narrow range found for the other most metal-deficient BCDs. We use the five strongest HeI emission lines 3889, 4471, 5876, 6678 and 7065, to correct self-consistently their intensities for collisional and fluorescent enhancement mechanisms and to derive the He abundance. Underlying stellar absorption is found to be important for the HeI 4471 emission line in both galaxies, being larger in Tol 65. The weighted He mass fractions in Tol 1214-277 and Tol 65 are respectively Y=0.2458+/-0.0039 and 0.2410+/-0.0050 when the three HeI emission lines, 4471, 5876 and 6678, are used, and are, respectively, 0.2466+/-0.0043 and 0.2463+/-0.0057 when the HeI 4471 emission line is excluded. These values are in very good agreement with recent measurements of the He mass fraction in others of the most metal-deficient BCDs by Izotov and coworkers. We find that the combined effect of the systematic uncertainties due to the underlying HeI stellar absorption lines, ionization and temperature structure of the HII region and collisional excitation of the hydrogen emission lines is likely small, not exceeding ~2% (the error is 2sigma). Our results support the validity of the standard big bang model of nucleosynthesis.Comment: 22 pages, 3 Postscript figures, accepted for publication in the Astrophysical Journa
    corecore