4 research outputs found

    reappraisal upon referral to a tertiary cancer centre

    Get PDF
    Funding Information: Publication costs for this article were supported by ecancer (UK Charity number 1176307). Publisher Copyright: © the authors; licensee ecancermedicalscience. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Cervical cancer (CC) is the first cause of cancer-related deaths among Cape Verdean women. The absence of a national screening programme and a lack of dedicated cancer treatment facilities contribute to its high mortality rate. In an effort to improve the prognosis of these women, a health cooperation agreement was established between Portugal and Cape Verde (CV), allowing their evacuation to Portuguese hospitals. Our aim was to characterise CC among CV women, and to assess the response given to these patients in Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), so that their treatment and follow-up protocols can be optimised and overall prognosis improved. Methods: Retrospective evaluation of women diagnosed with CC in CV that underwent therapy in IPOLFG between 2013 and 2020. Risk factors, demographic and tumour characteristics, treatment and outcomes were reviewed. Results: Fifty-eight patients were included. Squamous cell carcinoma was the most frequent (91.5%) histological type. HPV DNA was present in 25 out of 26 samples.The agreement rate between the pathology analysis performed in CV and in Portugal was high (87.9%); however, the agreement regarding the FIGO stage was low (15.5%). This may be explained by both the time interval between diagnosis and treatment (around 6 months) and by the absence of resources to accurately stage the disease in CV. In IPOLFG, 77.6% of patients received combined chemo-radiotherapy. Post-treatment follow-up varied widely, due to disease-related and bureaucratic issues. Eighteen patients developed cancer-related complications and/or cancer-related death. The survival rate and median overall survival (OS) in our cohort were of 89.7% and 73.2 months, respectively. Conclusions: Although most women had advanced-stage disease, the OS in our cohort was better than what has been reported for other African countries, probably because state-of-the-art treatment, frequently not accessible in those countries, was offered to all patients.publishersversionpublishe

    Non-COVID-19 respiratory viral infection

    Get PDF
    Implemented control measures brought about by the coronavirus disease 2019 (COVID-19) pandemic have changed the prevalence of other respiratory viruses, often relegating them to a secondary plan. However, it must not be forgotten that a diverse group of viruses, including other human coronaviruses, rhinoviruses, respiratory syncytial virus, human metapneumoviruses, parainfluenza and influenza, continue to be responsible for a large burden of disease. In fact, they are among the most common causes of acute upper and lower respiratory tract infections globally. Viral respiratory infections can be categorised in several ways, including by clinical syndrome or aetiological agent. We describe their clinical spectrum. Distinctive imaging features, advances in microbiological diagnosis and treatment of severe forms are also discussed.info:eu-repo/semantics/publishedVersio

    SARS-CoV-2 introductions and early dynamics of the epidemic in Portugal

    Get PDF
    Genomic surveillance of SARS-CoV-2 in Portugal was rapidly implemented by the National Institute of Health in the early stages of the COVID-19 epidemic, in collaboration with more than 50 laboratories distributed nationwide. Methods By applying recent phylodynamic models that allow integration of individual-based travel history, we reconstructed and characterized the spatio-temporal dynamics of SARSCoV-2 introductions and early dissemination in Portugal. Results We detected at least 277 independent SARS-CoV-2 introductions, mostly from European countries (namely the United Kingdom, Spain, France, Italy, and Switzerland), which were consistent with the countries with the highest connectivity with Portugal. Although most introductions were estimated to have occurred during early March 2020, it is likely that SARS-CoV-2 was silently circulating in Portugal throughout February, before the first cases were confirmed. Conclusions Here we conclude that the earlier implementation of measures could have minimized the number of introductions and subsequent virus expansion in Portugal. This study lays the foundation for genomic epidemiology of SARS-CoV-2 in Portugal, and highlights the need for systematic and geographically-representative genomic surveillance.We gratefully acknowledge to Sara Hill and Nuno Faria (University of Oxford) and Joshua Quick and Nick Loman (University of Birmingham) for kindly providing us with the initial sets of Artic Network primers for NGS; Rafael Mamede (MRamirez team, IMM, Lisbon) for developing and sharing a bioinformatics script for sequence curation (https://github.com/rfm-targa/BioinfUtils); Philippe Lemey (KU Leuven) for providing guidance on the implementation of the phylodynamic models; Joshua L. Cherry (National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health) for providing guidance with the subsampling strategies; and all authors, originating and submitting laboratories who have contributed genome data on GISAID (https://www.gisaid.org/) on which part of this research is based. The opinions expressed in this article are those of the authors and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government. This study is co-funded by Fundação para a Ciência e Tecnologia and Agência de Investigação Clínica e Inovação Biomédica (234_596874175) on behalf of the Research 4 COVID-19 call. Some infrastructural resources used in this study come from the GenomePT project (POCI-01-0145-FEDER-022184), supported by COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation (POCI), Lisboa Portugal Regional Operational Programme (Lisboa2020), Algarve Portugal Regional Operational Programme (CRESC Algarve2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by Fundação para a Ciência e a Tecnologia (FCT).info:eu-repo/semantics/publishedVersio
    corecore