6 research outputs found

    The Multidisciplinary Team (MDT) Approach and Quality of Care

    Get PDF
    The core function of a multidisciplinary team (MDT) is to bring together a group of healthcare professionals from different fields in order to determine patients' treatment plan. Most of head and neck cancer (HNC) units are currently led by MDTs that at least include ENT and maxillofacial surgeons, radiation and medical oncologists. HNC often compromise relevant structures of the upper aerodigestive tract involving functions such as speech, swallowing and breathing, among others. The impairment of these functions can significantly impact patients' quality of life and psychosocial status, and highlights the crucial role of specialized nurses, dietitians, psycho-oncologists, social workers, and onco-geriatricians, among others. Hence, these professionals should be integrated in HNC MDTs. In addition, involving translational research teams should also be considered, as it will help reducing the existing gap between basic research and the daily clinical practice. The aim of this comprehensive review is to assess the role of the different supportive disciplines integrated in an MDT and how they help providing a better care to HNC patients during diagnosis, treatment and follow up

    Principal component analysis as an efficient method for capturing multivariate brain signatures of complex disorders—ENIGMA study in people with bipolar disorders and obesity

    Get PDF
    Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. Practitioner Points: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.</p

    Principal component analysis as an efficient method for capturing multivariate brain signatures of complex disorders—ENIGMA study in people with bipolar disorders and obesity

    Get PDF
    Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. Practitioner Points: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.</p

    Study protocol – elucidating the neural correlates of functional remediation for older adults with bipolar disorder

    Get PDF
    IntroductionBeyond mood abnormalities, bipolar disorder (BD) includes cognitive impairments that worsen psychosocial functioning and quality of life. These deficits are especially severe in older adults with BD (OABD), a condition expected to represent most individuals with BD in the upcoming years. Restoring the psychosocial functioning of this population will thus soon represent a public health priority. To help tackle the problem, the Bipolar and Depressive Disorders Unit at the Hospital Clínic of Barcelona has recently adapted its Functional Remediation (FR) program to that population, calling it FROA-BD. However, while scarce previous studies localize the neural mechanisms of cognitive remediation interventions in the dorsal prefrontal cortex, the specific mechanisms are seldom unknown. In the present project, we will investigate the neural correlates of FR-OABD to understand its mechanisms better and inform for potential optimization. The aim is to investigate the brain features and changes associated with FROA-BD efficacy.MethodsThirty-two individuals with OABD in full or partial remission will undergo a magnetic resonance imaging (MRI) session before receiving FR-OABD. After completing the FR-OABD intervention, they will undergo another MRI session. The MRI sessions will include structural, diffusion-weighted imaging (DWI), functional MRI (fMRI) with working memory (n-back) and verbal learning tasks, and frontal spectroscopy. We will correlate the pre-post change in dorsolateral and dorsomedial prefrontal cortices activation during the n-back task with the change in psychosocial functioning [measured with the Functioning Assessment Short Test (FAST)]. We will also conduct exploratory whole-brain correlation analyses between baseline or pre-post changes in MRI data and other clinical and cognitive outcomes to provide more insights into the mechanisms and explore potential brain markers that may predict a better treatment response. We will also conduct separate analyses by sex.DiscussionThe results of this study may provide insights into how FROA-BD and other cognitive remediations modulate brain function and thus could optimize these interventions

    Sessió d'informació sobre els DAC de l'EPSEB

    No full text
    Sessió informativa sobre els DAC (Diplomes d'Ampliació de Competències) del Grau en Ciències i Tecnologies de l'Edificació, Màster en Enginyeria d'Edificació i Orientació Professional a càrrec dels Col·legis Professionals dels Graus de l'Escola Politècnica Superior d'Edificació de Barcelon
    corecore