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Abstract

Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders

which are characterized not by alterations in a single region, but rather by variations

across distributed brain networks. Here, we used principal component analysis (PCA)

to identify patterns of covariance across brain regions and relate them to clinical and

demographic variables in a large generalizable dataset of individuals with bipolar dis-

orders and controls. We then compared performance of PCA and clustering on iden-

tical sample to identify which methodology was better in capturing links between

brain and clinical measures. Using data from the ENIGMA-BD working group, we

investigated T1-weighted structural MRI data from 2436 participants with BD and

healthy controls, and applied PCA to cortical thickness and surface area measures.

We then studied the association of principal components with clinical and demo-

graphic variables using mixed regression models. We compared the PCA model with

our prior clustering analyses of the same data and also tested it in a replication sam-

ple of 327 participants with BD or schizophrenia and healthy controls. The first prin-

cipal component, which indexed a greater cortical thickness across all 68 cortical

regions, was negatively associated with BD, BMI, antipsychotic medications, and age

and was positively associated with Li treatment. PCA demonstrated superior good-

ness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the

PCA model to the replication sample yielded significant differences in cortical thick-

ness between healthy controls and individuals with BD or schizophrenia. Cortical

thickness in the same widespread regional network as determined by PCA was nega-

tively associated with different clinical and demographic variables, including diagno-

sis, age, BMI, and treatment with antipsychotic medications or lithium. PCA

outperformed clustering and provided an easy-to-use and interpret method to study

multivariate associations between brain structure and system-level variables.

Practitioner Points

1. In this study of 2770 Individuals, we confirmed that cortical thickness in wide-

spread regional networks as determined by principal component analysis (PCA)

was negatively associated with relevant clinical and demographic variables, includ-

ing diagnosis, age, BMI, and treatment with antipsychotic medications or lithium.

2. Significant associations of many different system-level variables with the same

brain network suggest a lack of one-to-one mapping of individual clinical and

demographic factors to specific patterns of brain changes.

2 of 16 MCWHINNEY ET AL.

 10970193, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26682 by E
rasm

us U
niversity R

otterdam
 U

niversiteitsbibliotheek, W
iley O

nline L
ibrary on [17/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-0046-4070
https://orcid.org/0000-0002-4461-3568
https://orcid.org/0000-0003-2921-3408
https://orcid.org/0000-0003-0281-8458
mailto:tomas.hajek@dal.ca


3. PCA outperformed clustering analysis in the same data set when predicting group

or BMI, providing a superior method for studying multivariate associations

between brain structure and system-level variables.

K E YWORD S

bipolar disorder, body mass index, MRI, obesity, principal component analysis, psychiatry

1 | INTRODUCTION

Large-scale, multisite brain imaging datasets are becoming more com-

mon through initiatives such as ENIGMA (McWhinney et al., 2023),

ADNI (Cruciani et al., 2024), ABCD (Dahl et al., 2024), the human con-

nectome project (Cohen et al., 2023), and others. Large datasets allow

us to apply multivariate techniques of analyses, which model interplay

between regions (Woo et al., 2017), but require larger, more ecologi-

cally valid samples to provide more replicable results (Marek

et al., 2022). These techniques better fit the anatomy of complex neu-

ropsychiatric disorders which are characterized not by alterations in a

single region, but rather by variations across distributed brain net-

works (Hibar et al., 2018; Segal et al., 2023). However, there is little

methodological clarity on which of the many available methods of

multivariate data analyses are best suited to the task of relating brain

structure to system-level variables. While development of new

methods is one key aspect of the field, uncovering benefits and best-

use scenarios for established methods is equally as important.

Analyzing brain imaging changes in BD is a suitable way to test

multivariate techniques. Individuals with BD markedly vary in their

clinical presentations and impact of the illness on their functioning.

This clinical heterogeneity may reflect neurobiological heterogeneity,

which can be studied by brain imaging. It is increasingly clear that

brain alterations in severe mental illnesses (SMI) are multifactorial.

Aside from the diagnosis, they also reflect the effects of additional

clinical factors, including medications (Hajek et al., 2012; McWhinney,

Abé, et al., 2022; Van Gestel et al., 2019), and comorbid psychiatric or

physical conditions, such as obesity (McWhinney, Abé, et al., 2021;

McWhinney, Brosch, et al., 2022; McWhinney, Kolenic, et al., 2021)

and diabetes (Hajek et al., 2014, 2016). Understanding the brain

changes in SMI and translating these findings into clinical settings

requires sensitive and replicable methods that link patterns of brain

alterations to system-level variables.

Broadly speaking, some methods, such as clustering, categorize

participants into groups based on their brain structure, while others,

such as principal component analyses, represent brain imaging data as

a linear combination of features. While clustering has become a popu-

lar method for multivariate analyses of neuroimaging data (McWhin-

ney, Abé, et al., 2022), we do not expect groups of individuals to fall

neatly into distinct clusters (e.g. healthy vs. unhealthy). Also, external

variables may not exhibit a binary effect on the brain, but rather a

nuanced, continuous one. Indeed our previous study using clustering

exemplified these issues. We found that there were no strictly sepa-

rate clusters in brain imaging data and that the boundaries between

BD and controls were not clear, i.e. many controls fell into the cluster

together with BD individuals, while some BD individuals clustered

with controls (McWhinney, Abé, et al., 2022). The cluster assignment

of individuals in part depended on continuous variables including age

and BMI and effectively resulted in categorizing of these continuous

variables, which is not optimal.

Neuroimaging data are often strongly correlated naturally (i.e. brain

networks) and due to preprocessing (i.e. coregistration, smoothing,

etc.), which is a good reason for linear projection methods. Instead of

categorization, such methods quantify degrees of variation and may be

better suited to identifying sources of heterogeneity in brain imaging

data, as many of these sources may in fact themselves be on a contin-

uum. While machine learning (ML) techniques can overcome these

challenges, such techniques require large training sets and out-

of-sample validation, and results can be difficult to interpret

and translate into practice. Principal component analysis (PCA) repre-

sents a potentially optimal middle ground between these approaches,

as it can perform well using modest sample sizes while reliably reducing

dimensionality across many variables (i.e. brain regions) and deriving

robust low-dimensional data representations (Comrey & Lee, 2013). By

identifying covariance across individuals in numerous regions simulta-

neously, PCA can identify patterns of distributed brain network

changes that can subsequently be linked with clinical correlates, while

maintaining interpretability (Behdinan et al., 2015; Maralakunte

et al., 2023; Rehák Bučková et al., 2023; Yeh et al., 2010).

Our main goal here is to compare whether methods which repre-

sent brain imaging data as a linear combination of features are better

in capturing associations with clinical variable than methods which

categorize brain imaging data into clusters. To do that we selected the

most established and representative examples of each approach,

i.e. PCA vs K-means clustering. Specifically, we used PCA to identify

patterns of covariance across regions of interest and related them to

clinical and demographic variables. We then compared performance

of this approach to our prior clustering study on identical sample. We

expected that compared to clustering, patterns of covariance in brain

imaging data, as identified by PCA, would show stronger associations

with clinical and demographic variables.

2 | MATERIALS AND METHODS

2.1 | Participating sites

The ENIGMA-BD working group brings together researchers with

brain imaging and clinical data from people with BD (Hibar

et al., 2016, 2018; McWhinney, Abé, et al., 2021; McWhinney

MCWHINNEY ET AL. 3 of 16
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et al., 2023). Nineteen site members of this group from 13 countries

on six continents contributed individual subject structural MRI data,

medication information, and body mass index (BMI) values for a total

of 2770 participants. We split this sample into the primary and repli-

cation samples. The primary sample (N = 2436) was identical to the

one in our previous study (McWhinney, Abé, et al., 2022) and

allowed us to directly compare the results of clustering and PCA on

the same sample. An additional five sites contributed data to our

replication sample for out-of-sample validation (n = 327). Two of

the new sites also recruited individuals with schizophrenia

(N = 107). We decided to include them for testing the diagnostic

specificity of the findings. Table 1, as well as Supplementary

Tables S1 and S2 list the demographic and clinical details for each

cohort. Supplementary Table S3 provides the diagnostic instruments

used to obtain diagnosis and clinical information. Supplementary

Table S4 lists exclusion criteria for study enrollment. Briefly, all stud-

ies used standard diagnostic instruments, including SCID (N = 12

studies), MINI (N = 1), and DIGS (N = 1). Most studies (N = 8)

included both bipolar I (BDI) and bipolar II (BDII) disorders, five stud-

ies included only BDI, and one study only BDII participants. At the

time of scanning, most individuals with BD were euthymic (81%),

with some depressed (15%), manic (2%), hypomanic (1%), or mixed

(<1%). Substance abuse was an exclusion criterion in seven studies.

Most studies did not exclude comorbidities, other than substance

abuse. Consequently, the sample represents one of the broadest,

ecologically most valid, and a generalizable representation of real-

world BD studied to date. In order to test how well a method cap-

tures relevant clinical links, we need a broad representation of the

diagnosis, which is not restricted to one subtype and ideally also

includes representation of other diagnoses.

All participating sites received approval from local ethics commit-

tees, and all participants provided written informed consent. The

authors assert that all procedures contributing to this work comply

with the ethical standards of the relevant national and institutional

committees on human experimentation and with the Helsinki Declara-

tion of 1975, as revised in 2008.

TABLE 1 Demographic, diagnostic, and treatment characteristics of sample.

Controls Cases Difference

Primary sample Sample size (N) 1600 836

Sex—N (%) male 684 (42.8) 353 (42.2) χ2 = 0.25, p = .617

Age—mean (SD) 35.47

(12.63)

40.57

(12.81)

F(1,2433) = 49.64, p < .001*

BMI—mean (SD) 24.43 (4.12) 27.10 (5.30) F(1,2378) = 135.46,

p < .001*

BMI category—N (%)

Normal 1014 (63.4) 331 (39.6) χ2 = 158.55, p < .001*

Overweight 437 (27.3) 298 (35.6)

Obese 149 (9.3) 207 (24.8)

Diagnosis in patients—N (%): BD-I/BD-III/BD-NOS 572 (70.5)/234 (28.9)/5 (0.6)

Treatment at time of scan in patients—N (%): None/Lithium/

Anticonvulsant/1st gen./2nd gen. antipsychotic/

Antidepressant

226 (27.0) / 373 (49.7) /244

(35.4) / 37 (5.4) /262 (37.4)

/ 248 (35.4)

Replication

sample

Sample size 136 191

Sex—N (%) male 59 (43.4) 115 (60.2) χ2 = 2.85, p = .091

Age—mean (SD) 38.54

(13.51)

40.25

(12.87)

F(1,246) = 0.01, p = .986

BMI—mean (SD) 24.60 (4.77) 29.35 (6.63) F(1,82) = 21.86, p < .001*

BMI category—N (%)

Normal 89 (65.4) 54 (27.7) χ2 = 51.03, p < .001*

Overweight 30 (22.1) 56 (29.3)

Obese 17 (12.5) 82 (42.9)

Diagnosis in patients—N (%): BD-I/BD-III/BD-NOS

/Schizophrenia

15 (7.8)/9 (4.7)/1 (0.1)/107

(56.0)

Treatment at time of scan in patients – N (%): None/Lithium/

Anticonvulsant/1st gen./2nd gen. antipsychotic/

Antidepressant

57 (29.8)/24 (12.6)/38

(19.9)/35 (18.3)/112

(58.6)/60 (31.4)

Note: Asterisks indicate significant group differences (*p < .05).
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2.2 | MRI acquisition & processing

High-resolution T1-weighted brain anatomical MRI scans were

acquired at each site, see Table S5. All groups used the same

ENIGMA-standardized FreeSurfer protocol to derive region of interest

(ROI) estimates of cortical thickness and surface area and performed

standard visual and statistical quality assessment, as detailed at:

http://enigma.ini.usc.edu/protocols/imaging-protocols/. These open-

source protocols are standardized across the ENIGMA consortium,

and available online to foster open science, replication, and better

reproducibility. They were applied in prior publications by our group

(Hibar et al., 2018; McWhinney et al., 2023), and more broadly in

large-scale ENIGMA studies of major depression, schizophrenia,

ADHD, OCD, PTSD, epilepsy, and autism (Thompson et al., 2020).

Briefly, FreeSurfer provides segmentations of 34 cortical regions

per hemisphere, based on the Desikan–Killiany atlas, with estimates

of cortical thickness and surface area for each region. Visual quality

controls were performed on a ROI level aided by a visual inspection

guide including pass/fail segmentation examples. We also generated

diagnostic histogram plots for each site and outliers that deviated

from the site mean for each structure by more than three standard

deviations were flagged for further review. All observations failing

quality inspection were withheld from subsequent analyses, see

Table S6. Measurements were removed in 1.4% of participants per

region on average, and missing values were imputed using the mis-

sForest algorithm (Stekhoven & Bühlmann, 2012). Prior analyses from

the ENIGMA-BD working group showed that scanner field strength,

voxel volume, and the version of FreeSurfer used for segmentation

did not significantly influence the effect size estimates (Hibar

et al., 2016).

2.3 | Principal component analysis

We scaled each region to be zero-centered with a standard deviation

of 1.0 and used PCA to obtain the loadings and scores of each princi-

pal component (PC) separately for cortical thickness and surface area,

with each including all 68 cortical regions. Loadings indicated the con-

tribution of each region in reduced-dimensional space for each com-

ponent, and scores reflected the position of individuals in that

component's space based on their cortical thickness or surface area

weighted by each component's loadings. For each, we calculated the

proportion of variance explained by each component and took

the first component as the indicator of whole-brain structural covari-

ance across individuals (Alexander-Bloch et al., 2013). The principal

components are essentially anatomical patterns composed of highly

correlated brain regions (Alexander-Bloch et al., 2013). We further

focused on PCs that explained more than 10% of variance in either

cortical measure.

The scores for these components provided each participant a sin-

gle number to indicate their position on a continuous range of alter-

ations across 68 ROIs throughout the whole cortical mantel. We

plotted these scores to better visualize them. We tested for

associations between the component score and clinical or demo-

graphic factors, as described below. First, this PCA model was com-

pleted in the primary sample which was identical to the sample we

used for clustering in our previous work, in order to be able to directly

compare the two methods (McWhinney, Abé, et al., 2022). Second, it

was performed in our replication sample that included only newly

contributing sites.

2.4 | Statistical modeling

The list of all models we tested is included in the supplement. For

each of cortical thickness and surface area, we used mixed linear

regression modeling to test for associations between the individual

component's score (and by proxy their associated patterns of brain

structure) with group (BD or control), BMI, age, and sex. In previous

studies, BMI has proven to be robustly related to cortical thickness

(McWhinney et al., 2023; McWhinney, Brosch, et al., 2022). We

tested for nonlinear effects of age (age squared), as well as for interac-

tions between age, sex, and BMI. We additionally tested the inclusion

of an interaction between group and BMI, including it if significant.

BMI and age were each scaled to a range of 4.0 so that model esti-

mates would equate to quartiles of their distributions.

This same procedure was performed among participants with BD

using predictors of BMI, age, sex, diagnosis subtype (BD-I or BD-II),

age of illness onset, history of psychosis (Y/N), and prescribed medica-

tions at the time of scanning (antidepressant, 1st or 2nd generation

antipsychotic, anticonvulsant, and/or lithium), coded as yes or no for

each medication class as separate predictors, as in prior ENIGMA BD

analyses (McWhinney, Abé, et al., 2022). We tested for interactions

between BMI and medications and included them if significant. All

models included research site as a random effect. We checked for

normality of residuals using QQ plots, and for multicollinearity by test-

ing the variance inflation factor (VIF). All modeling was completed

using the package lme4 (v1.1-21) and lmerTest (v3.1-3) in

R version 4.1.1.

We compared the PCA with clustering analyses used in our previ-

ous paper (McWhinney, Abé, et al., 2022). We obtained the cluster

number for each participant using the exact sample and procedure

described in our previous study (McWhinney, Abé, et al., 2022). Both

outcome measures (first component score for cortical thickness and

cluster number) were tested as predictors of our two variables of

interest, group (control or BD) and BMI, to determine which measure

was a stronger predictor of each variable. We used mixed logistic

regression modeling to test for associations between group and

(1) covariates alone; (2) covariates with cluster number; (3) covariates

with the first PC's score; and (4) all of the above. Covariates included

BMI, age, sex as fixed effects, and research site as a random effect.

We calculated the Bayesian Information Criterion (BIC), area under

the curve (AUC) of the ROC curve, as well as predictor and model sig-

nificance to compare the predictive power of each model in associa-

tion with the participant group. We performed the same procedure

using mixed linear regression modeling with BMI as the dependent

MCWHINNEY ET AL. 5 of 16
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variable but using the diagnostic group as a covariate instead of BMI

and estimating model fit using R2 instead of AUC.

Lastly, we tested the fit of either average cortical thickness or the

first component's score as dependent variables to BMI and group as

predictors. We compared fit between these two models (R2, AIC, BIC).

We additionally tested the Pearson correlation coefficient between

average cortical thickness and the first component's score, and we

further tested the significance of their association while adjusting for

a random effect of research site.

2.5 | Harmonization of between-site differences

The methods described above control for differences between sites

using random effects in mixed regression modeling, identically to the

preferred approach in most previous comparable studies (Hibar

et al., 2016, 2018; McWhinney, Abé, et al., 2021; McWhinney, Abé,

et al., 2022; McWhinney, Brosch, et al., 2022; McWhinney

et al., 2023). As a sensitivity analysis, we additionally pre-processed

the raw data using ComBat to mitigate between-site variability in the

raw data (Johnson et al., 2007; Radua et al., 2020). We recompleted

PCA in cortical thickness for our primary sample, calculated scores for

the first component, and tested for associations with group, age, sex,

and BMI as specified above. Estimates and significance of these

effects were compared with and without the transformation of Com-

Bat to test whether the combination of PCA and random effects ade-

quately controlled for between-site variability.

2.6 | Application in replication sample

The PCA model derived from cortical thickness of the primary sample

was applied in the replication sample by applying the first PC's projec-

tions to the cortical thickness data for these new individuals. The first

PC's score in the new data was tested for associations with group, BMI,

age, sex, and a random effect of research site using linear mixed

F IGURE 1 PCA results with variance explained by each component (left) and distribution of the first two components for cortical thickness
and surface area (right). Cortical thickness distributions are broken out by research site.

6 of 16 MCWHINNEY ET AL.
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regression modeling. Group was first tested using two levels (healthy

controls or patients), and second using three levels (healthy controls, indi-

viduals with BD, or schizophrenia). We included individuals with schizo-

phrenia, as we wanted to test whether the method revealed something

specific to BD or whether the results represented a general pattern

across diagnoses. For comparison, a new PCA model was additionally

run in the replication sample, resulting in each individual receiving a first

component score from each of the two PCA models. These two scores

were compared using the Pearson correlation coefficient.

3 | RESULTS

3.1 | Sample

Both the primary and replication samples are outlined in Table 1. In

both samples, individuals with BD were significantly older and had sig-

nificantly higher BMI relative to controls. All models that included

both groups adjusted for both age and BMI.

3.2 | Principal component analysis

In the primary sample, the scores for each of the first PCs accounted

for 42.7% of variance in cortical thickness, and 46.2% in surface area

(see Figure 1). With exception of the second component for cortical

thickness (11.5%, see Figure S1), all other components in both

measures explained <5% of variance each. The first principal compo-

nent scores were associated with higher cortical thickness and surface

area in all studied regions, with some regional variations in the

strength of association (see Figure 2). Consequently, if a clinical vari-

able was associated with lower first component score, then it would

be associated with lower cortical thickness across regions in a pattern

reflecting the component's loadings across the regions.

For cortical thickness, the first component's score was negatively

associated with diagnosis of BD, BMI, and age, indicating that BD,

BMI, and age were independently associated with a diffuse pattern of

thinner cortex, see Table 2. Among participants with BD, lithium and

antipsychotic medications showed opposing associations with the first

principal component, such that antipsychotics were negatively while

lithium was positively associated with cortical thickness, see Table 2.

The second component for cortical thickness was significantly associ-

ated with BMI, age, and sex, see Table S7.

For surface area, only sex, age, and Li treatment were associated

with the first component scores for surface area, see Table 2.

Females, relative to males, and older participants showed significantly

smaller surface area, while those prescribed lithium showed larger

surface area.

3.3 | Comparing goodness of fit

Rankings of component loadings closely overlapped with the ranking

based on clustering (Cohen et al., 2023) (Spearman ρ = 0.922,

F IGURE 2 Factor loadings of the first
principal component for cortical thickness
(top) and surface area (bottom).
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p < .001). We tested goodness of fit measures when using the covari-

ates alone, relative to the addition of cluster number, the first PC

score for cortical thickness, or both combined. Each of these sets of

predictors was included in separate models for the prediction of group

(control or BD) or BMI. Multicollinearity among the cluster number

and the first component was acceptable in the combined model

(VIF = 2.4). Results are shown in Table 3.

The BIC indicated that PCA offered the most accurate and parsi-

monious model over any other option when predicting the group

(BD or controls). Both the clustering and PCA methods had a similar

BIC when predicting BMI. However, goodness of fit (AUC for group,

or R2 for BMI) was highest when using PCA to predict either group or

BMI. While cluster number and the first component score were signif-

icant predictors of both group and BMI alone, when both were

included as predictors in a single model, only the first PC was a signifi-

cant predictor of BMI. Also, both the cluster and PCA models pro-

vided a significantly better fit than the covariate-only model.

Critically, while the combined model performed significantly better

than the cluster-based model, it was not a significant improvement

over the PCA model (Table 3).

Lastly, when testing the association between the first compo-

nent's score for cortical thickness with BMI and group, model fit

(R2 = .065) was 28.6% higher than when using average cortical thick-

ness (R2 = .050), with corresponding improvements in AIC and BIC,

see Table 4. The first component score and average cortical thickness

were highly correlated (r = .983, p < .001, see Figure S2), and average

cortical thickness was significantly associated with the first compo-

nent score of cortical thickness with adjustment for research site (t

(2433) = 290.30, p < .001).

3.4 | PCA predictions in replication sample

When applying the PCA model to the cortical thickness estimates in

the replication sample on which the model was not trained, the first

PC (i.e. thickness overall) was significantly smaller in patients (BD and

schizophrenia) relative to controls (Difference estimate = 1.48,

SE = 0.49, F(1,320) = 8.84, p = .003), and in older participants (F

(1,321) = 193, p < .001), while there was no significant association

with BMI or sex. These results are consistent with those for the origi-

nal sample (see Table 2), except for the missing association with BMI,

which may be due to lower statistical power in the smaller sample,

which was 13.4% the size of the primary sample. When categorized

using three diagnostic groups, significant group differences remained

TABLE 2 Associations between demographic, clinical, and treatment characteristics and the first principal component of cortical thickness
and surface area.

All participants Participants with BD

Estimate (SE) Significance Estimate (SE) Significance

Cortical thickness Group (BD) �1.38 (0.17) F(1,2421) = 67.80, p = .000* n/a n/a

BMI �0.39 (0.13) F(1,2419) = 8.79, p = .003* 0.25 (0.29) F(1,436) = 0.75, p = .387

Sex (F) 0.16 (0.14) F(1,2418) = 1.30, p = .254 �0.01 (0.34) F(1,435) = 0.00, p = .970

Age �3.10 (0.10) F(1,2422) = 1003.34, p = .000* �3.37 (0.28) F(1,439) = 143.67, p < .001 *

Diagnosis BDII n/a n/a �0.74 (0.57) F(1,438) = 1.65, p = .200

Lithium n/a n/a 0.80 (0.38) F(1,437) = 4.50, p = .034 *

Antipsychotic n/a n/a �0.90 (0.38) F(1,438) = 5.61, p = .018 *

Anticonvulsant n/a n/a �0.79 (0.40) F(1,438) = 3.84, p = .051

Antidepressant n/a n/a 0.20 (0.37) F(1,436) = 0.28, p = .597

Age of onset n/a n/a 0.03 (0.02) F(1,437) = 2.29, p = .131

Psychosis n/a n/a 0.44 (0.46) F(1,439) = 0.92, p = .338

Cortical surface area Group (BD) �0.03 (0.22) F(1,2431) = 0.02, p = .904 n/a n/a

BMI �0.10 (0.18) F(1,2424) = 0.35, p = .554 0.41 (0.38) F(1,439) = 1.20, p = .274

Sex (F) �5.77 (0.18) F(1,2421) = 980.07, p = .000* �6.40 (0.44) F(1,436) = 210.13, p < .001*

Age �1.53 (0.13) F(1,2430) = 139.82, p = .000* �2.49 (0.36) F(1,440) = 47.03, p < .001*

Diagnosis BDII n/a n/a �0.81 (0.74) F(1,441) = 1.19, p = .276

Lithium n/a n/a 1.55 (0.48) F(1,440) = 10.23, p = .001*

Antipsychotic n/a n/a �0.36 (0.49) F(1,441) = 0.54, p = .463

Anticonvulsant n/a n/a 0.56 (0.52) F(1,441) = 1.16, p = .282

Antidepressant n/a n/a 0.33 (0.48) F(1,437) = 0.47, p = .495

Age of onset n/a n/a 0.03 (0.03) F(1,441) = 1.01, p = .315

Psychosis n/a n/a 0.34 (0.59) F(1,440) = 0.33, p = .565

Note: Asterisks indicate significant associations (*p < .05).
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(F(1,318) = 7.21, p = .001), with the thickest cortex in controls, inter-

mediate in BD (Est = �0.96, SE = 0.54), and the thinnest in schizo-

phrenia (Est = �2.31, Est = 0.61).

Within the replication sample, the first PC derived from the train-

ing sample loadings was strongly correlated with the first PC from the

new PCA, completed in this replication sample (r = .998, t(325)

= 308.32, p < .001). These findings suggest that the PCA model is

sensitive not only to generalizable differences seen in BD from other

samples but also to similar variations seen in other SMIs.

3.5 | Exploration of components

The distribution on the first component for cortical thickness was nor-

mal (W = 0.99, p = .422), whereas the second component showed a

non-normal, bimodal distribution (Figure 1, W = 0.89, p < .001). The

distinct cluster of lower scores consisted of data from a single

research site; no other clinical or demographic data distinguished

these clusters. The variance accounted for by each component is

shown in Table S8.

3.6 | Comparison with ComBat

Similar to the analyses without ComBat, the first PC of data which

were preprocessed with ComBat remained significantly associated

with age, BMI, and diagnosis of BD. Specifically, we found signifi-

cantly thinner cortex in older participants (Est = �3.94, 95% CI

[�4.05, �3.62]), those with higher BMI (Est = �0.50, 95% CI [�0.81,

�0.18]), and those with BD (Est = �1.66, 95% CI [�2.03, �1.30]). In

addition, the ranking of regional component loadings for the first PC

with and without the application of ComBat using the Spearman rank

order correlation coefficient was almost identical (ρ = 0.921,

p < .001), see Table S9 for more details.

4 | DISCUSSION

In this study, the first of 68 total PCs accounted for 42.7% of variance

in cortical thickness. The first PC, which indexed a greater cortical

thickness across all 68 cortical regions, was negatively associated with

BD, BMI, antipsychotic medications, and age and positively associated

TABLE 3 Model fit metrics for predicting group (control or BD) or BMI using (1) covariates only (Group in BMI model, BMI in group model,
age, sex, research site), (2) covariates with cluster number, (3) covariates with first component of PCA, and (4) all of the above.

Covariates Covariates, cluster Covariates, PCA

Covariates,

cluster, PCA

Predicting

group

Model fit BIC 2512 2501 2458 2465

AUC 0.811 0.815 0.823 0.823

Predictor

significance

Cluster number – χ2 = 18.52,

p < .001*

– χ2 = 0.19, p = 0.659

PCA first

component

– – χ2 = 57.99,

p < .001*

χ2 = 41.04, p < .001*

Model significance VS Covariates – χ2 = 18.75,

p < .001*

χ2 = 61.67,

p < .001*

χ2 = 61.86, p < .001*

VS Cluster model – – – χ2 = 43.11, p < .001*

VS PCA Model – – – χ2 = 0.19, p = .660

Predicting BMI Model fit BIC 3793 3803 3803 3816

R2 .159 .162 .167 .167

Predictor

significance

Cluster number – χ2 = 3.95,

p = .047*

– χ2 = 0.16, p = .687

PCA first

component

– – χ2 = 7.76,

p = .005*

χ2 = 3.95, p = .047*

Model significance VS Covariates – χ2 = 3.94,

p = .047*

χ2 = 7.65,

p = .006*

χ2 = 7.81, p = .020*

VS Cluster model – – – χ2 = 3.86, p = .049*

VS PCA Model – – – χ2 = 0.16, p = .686

Note: Asterisks indicate significant associations (*p < 0.05).

TABLE 4 Comparison of fit when
using either the first component for CT
or average cortical thickness as outcomes
predicted by participant group and BMI.

Outcome Predictors R2 AUC AIC BIC Percent fit improvement

First component BMI, Diagnosis .065 – 6756 6780 28.6%

Avg. thickness BMI, Diagnosis .050 – 6793 6817 –

Note: Fit is shown using R2 for linear models. Percent improvement in fit for using the first component

relative to average thickness is shown in each model.
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with Li treatment. These associations between the first PC and corti-

cal thickness closely mirrored the associations found when applying

clustering to the same sample, where the cluster with lower cortical

thickness was also associated with diagnosis of BD, higher BMI, and

older age, and the cluster with higher cortical thickness was associ-

ated with Li treatment (McWhinney, Abé, et al., 2022). Only PCA, not

clustering detected links with antipsychotic medications. Also, when

directly compared, PCA outperformed clustering as predictors of clini-

cal and demographic variables. When we applied the PCA to the pre-

viously unseen replication sample collected from additional ENIGMA-

BD working group sites, on which the model was not trained, we

found the same patterns of associations with diagnosis and age, even

though the sample was almost 90% smaller. The same pattern of brain

changes detected in BD was also associated with the diagnosis of

schizophrenia. Similar to previous large-scale studies, surface area was

not associated with diagnosis of BD or BMI (Hibar et al., 2018;

McWhinney, Abé, et al., 2022; McWhinney, Brosch, et al., 2022;

McWhinney et al., 2023). The different system-level correlates of CT

and SA in our and previous studies further support the practice of

keeping these measures separate.

We directly compared PCA and clustering in the same dataset.

Both methods detected similar associations with system-level vari-

ables, including diagnosis, BMI, age, and Li exposure. However, PCA

outperformed clustering in terms of model fit and sensitivity. We sus-

pect there are systematic reasons for this. Even if there are no clearly

defined discontinuities/clusters in the data, clustering would segment

continuous distribution of findings into several parts. Similar categori-

zation of a continuous range of values necessarily results in a loss of

statistical power, as very alike individuals are considered distinct when

on opposing sides of a clustering threshold. That is, clustering does

not encode the distance between individuals in the multidimensional

space where those assigned to the same cluster still differ from one

another. Similarly, as there are no strict boundaries, individuals

assigned to different clusters may be very similar to one another. In

contrast, PCA does not need arbitrary criteria to delineate patterns

and find orthogonal effects in the dataset. Within the same compo-

nent, we were able to maintain the strength of the associations and

distance between individuals. For both reasons, PCA should systemat-

ically outperform clustering when there are no clearly defined groups

of individuals and indeed that was the case in our study.

While our study replicates previous findings of negative associa-

tions between cortical thickness and diagnosis of BD in mass univari-

ate analyses (Hibar et al., 2018; McWhinney, Abé, et al., 2021;

McWhinney, Brosch, et al., 2022; van Erp et al., 2018), the effect size

for association between first PC (d = 0.33) and diagnosis of BD was

stronger than associations between individual ROIs and the diagnosis

of BD in previous ENIGMA studies (d = 0.015–0.29) (Hibar

et al., 2018) and instead of running one model per region, we captured

covariance across all regions by a single number. Even in mass univari-

ate analyses associations between clinical variables and brain struc-

ture are evident across many regions and are not isolated to a single

ROI (Hibar et al., 2018; McWhinney, Abé, et al., 2021; McWhinney,

Brosch, et al., 2022; van Erp et al., 2018). The lesion model, where

changes in a single region are necessary and sufficient to cause an ill-

ness, clearly does not apply to a complex disorder such as BD (Hibar

et al., 2018; Reddan et al., 2017). Consequently, looking at distributed

effects across groups of regions should be more informative than

looking at individual regions. All in all, it is encouraging that our find-

ings converge with these theoretical expectations and suggest that

multivariate analyses are better suited to studying complex neuropsy-

chiatric disorders than mass univariate ones.

While the second component for cortical thickness explained

approximately 12% of variance, it was associated predominantly with

research site; with the outlying site removed, the second component

explained only 5% of the variance, see supplement. It is interesting

that the first and second components, which are necessarily orthogo-

nal to one another, were each predominantly associated with clinical/

anthropometric variables, or research site, respectively. These differ-

ences need to be replicated in other studies, but they may represent a

more generalizable pattern. After all, correlates of demographic and

clinical variables are consistent in the same direction (i.e. negatively

associated with cortical thickness). In contrast, the variations related

to research sites may be less consistent and less predictable. Conse-

quently, they may fall into separate components. Interestingly when

we applied a different method of removing the site effects, i.e. Com-

Bat, the associations between the first PC and clinical/demographic

variables remained identical to the results obtained without ComBat.

Even without removal of site effects from the raw data, by identifying

orthogonal components, PCA may implicitly separate the site effects

from the more predictable/systematic biological effects. If confirmed

in future studies, this would be a major advantage of PCA.

The same distributed pattern of brain regions was associated with

each of the system-level variables. When we applied the PCA projec-

tions to the replication sample, we found associations with similar

system-level variables, consistent with observations by others (Cao

et al., 2023). In fact, the same patterns were also associated with the

diagnosis of schizophrenia. This is in keeping with other large-scale

studies or meta-analyses, which have also demonstrated that there is

a common, non-specific pattern of case-control differences across

major psychiatric disorders (Goodkind et al., 2015; Hettwer

et al., 2022; Matsumoto et al., 2023), with highly correlated neuro-

structural abnormalities between BD and schizophrenia (Opel

et al., 2020) and with PCA detecting a profile of shared cortical thick-

ness differences across 6 major psychiatric disorders, which explained

48% of variance (Writing Committee for the Attention-Deficit/

Hyperactivity Disorder et al., 2021). Some have argued that there may

be more cause-specific alterations after removing this non-specific

pattern of the first component (Cao et al., 2023), though with excep-

tion of the second component for cortical thickness, subsequent com-

ponents explained only a small fraction of variance (i.e. typically less

than 5% each). All in all, this study contributed to the growing body of

evidence for lack of specificity of associations between some key clin-

ical and demographic factors and patterns of brain alterations, so-

called neural P factor (Sprooten et al., 2022). Many different variables,

including age, obesity, psychiatric diagnoses may be negatively associ-

ated with cortical thickness across a wide range of cortical regions.
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When testing associations with BMI and group, the first PC

explained 28.6% more variance than average cortical thickness. Princi-

pal component analysis, which accounts for the regional distribution

of effects, was better than simple average cortical thickness, which

collapses information across all regions. At the same time, the PC1

was highly correlated with average cortical thickness. While there are

regional effects and accounting for these improves the fit of the

model, the system-level variables are associated with some level of

cortical thinning across most regions. This may further contribute to

the lack of specificity of the system level to brain associations and is

consistent with findings from another study indicating that accuracy

of ML classifier comparing controls versus BD versus schizophrenia

was strongly dependent on global grey matter measures (Schwarz

et al., 2019).

Our findings confirmed that BD is characterized by diffuse

regional structural brain alterations, specifically lower cortical thick-

ness. The fact that these alterations are so diffuse as to resemble

global atrophy is interesting. We can only speculate about why this

would occur. First of all, most pathologies will result in atrophy,

i.e. thinning of the cortex. Second of all, changes in one region are

likely to propagate through the network, thus eventually involving

more related regions. Thirdly, perturbations within one network are

going to propagate to other networks, thus involving even more

regions eventually to the point of resembling a global atrophy. These

mechanisms could explain why so many regions are correlated across

individuals, why the association with the first component is uniformly

in one direction, and even why different predictors (age, BMI, BD,

schizophrenia, medications) are all associated with the same global

pattern.

The advantages of this study include the large sample size, the

validation of the most prominent findings in a replication sample, and

the multivariate approach which improved statistical sensitivity.

Importantly, we were able to directly compare results between two

unique multivariate analyses in the same sample: clustering and PCA.

The multi-site nature of the study is a limitation that complicates

the data analyses and interpretation of the results. At the same time,

our findings suggest that PCA may code site in separate PCs from the

effects of clinical/anthropometric variables. Along similar lines,

the sample contained a broad representation of BD, including individ-

uals with BDII and we also included a sample of people with schizo-

phrenia. In order to test how well a method captures relevant clinical

links, we need a representative/generalizable snapshot of the disor-

der, which is not restricted to one subtype and ideally also includes

representation of other diagnoses. More detailed clinical or biological

markers beyond those analyzed were not broadly available through-

out the ENIGMA-BD working group. While it is possible that associa-

tions with other clinical variables would show different patterns, the

consistent and replicated nature of the direction of associations and

spatial distribution of networks suggest this is unlikely. As these were

independently collected datasets, not a centralized single study, we

did not have access to raw, whole-brain data.

We performed these analyses on derived estimates of cortical

thickness and surface area, but we cannot generalize our findings to

other measures, which may show different patterns of associations.

There are other methods within this broad category, which may be of

specific use for example when attempting a multimodal data fusion,

i.e. FLICA. However, comparing different methods within the broad

group of linear representation of data was not our goal and would

likely only lead to incremental gains, if any. We did not test other mul-

tivariate techniques including ML methods, which are difficult to

interpret. Our interest was in applying traditional methods which may

also be applied in smaller samples and in a wide range of situations,

including clinical settings. Due to simplicity and straightforward appli-

cation of the linear methods, they may be a method of choice, espe-

cially where the size/structure of the dataset would not allow for

proper ML.

5 | CONCLUSION

In this study, we confirmed that cortical thickness in widespread

regional networks as determined by PCA is negatively associated with

relevant clinical and demographic variables, including diagnosis, age,

BMI, and treatment with antipsychotic medications or lithium. The

action of these factors on a widespread network suggests that con-

ceptualizing or studying their effects on individual regions may be

misleading. In addition, significant associations of many different

system-level variables with the same network suggest a lack of speci-

ficity to individual clinical and demographic factors. While there may

be general agreement among multivariate techniques on these associ-

ations, PCA outperformed clustering and may better fit the nature of

brain imaging data in SMI. More broadly, the results have demon-

strated that representing data as a linear combination of features is

superior to clustering when investigating links between brain and sys-

tem measures in SMI. This work could help researchers make

informed decisions about which methods to use and could save them

from applying an ill-fitting method, when a simpler, more reproducible

one is available.
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