12,294 research outputs found

    HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization

    Get PDF

    Basis set effects on the hyperpolarizability of CHCl_3: Gaussian-type orbitals, numerical basis sets and real-space grids

    Get PDF
    Calculations of the hyperpolarizability are typically much more difficult to converge with basis set size than the linear polarizability. In order to understand these convergence issues and hence obtain accurate ab initio values, we compare calculations of the static hyperpolarizability of the gas-phase chloroform molecule (CHCl_3) using three different kinds of basis sets: Gaussian-type orbitals, numerical basis sets, and real-space grids. Although all of these methods can yield similar results, surprisingly large, diffuse basis sets are needed to achieve convergence to comparable values. These results are interpreted in terms of local polarizability and hyperpolarizability densities. We find that the hyperpolarizability is very sensitive to the molecular structure, and we also assess the significance of vibrational contributions and frequency dispersion

    Magnetic patterning of (Ga,Mn)As by hydrogen passivation

    Full text link
    We present an original method to magnetically pattern thin layers of (Ga,Mn)As. It relies on local hydrogen passivation to significantly lower the hole density, and thereby locally suppress the carrier-mediated ferromagnetic phase. The sample surface is thus maintained continuous, and the minimal structure size is of about 200 nm. In micron-sized ferromagnetic dots fabricated by hydrogen passivation on perpendicularly magnetized layers, the switching fields can be maintained closer to the continuous film coercivity, compared to dots made by usual dry etch techniques

    Time and context effects after discrimination reversal in human beings.

    Get PDF

    Accuracy of generalized gradient approximation functionals for density functional perturbation theory calculations

    Get PDF
    We assess the validity of various exchange-correlation functionals for computing the structural, vibrational, dielectric, and thermodynamical properties of materials in the framework of density-functional perturbation theory (DFPT). We consider five generalized-gradient approximation (GGA) functionals (PBE, PBEsol, WC, AM05, and HTBS) as well as the local density approximation (LDA) functional. We investigate a wide variety of materials including a semiconductor (silicon), a metal (copper), and various insulators (SiO2_2 α\alpha-quartz and stishovite, ZrSiO4_4 zircon, and MgO periclase). For the structural properties, we find that PBEsol and WC are the closest to the experiments and AM05 performs only slightly worse. All three functionals actually improve over LDA and PBE in contrast with HTBS, which is shown to fail dramatically for α\alpha-quartz. For the vibrational and thermodynamical properties, LDA performs surprisingly very good. In the majority of the test cases, it outperforms PBE significantly and also the WC, PBEsol and AM05 functionals though by a smaller margin (and to the detriment of structural parameters). On the other hand, HTBS performs also poorly for vibrational quantities. For the dielectric properties, none of the functionals can be put forward. They all (i) fail to reproduce the electronic dielectric constant due to the well-known band gap problem and (ii) tend to overestimate the oscillator strengths (and hence the static dielectric constant)
    corecore