7 research outputs found

    Treatment of pregnant rats with oleoyl-estrone slows down pup fat deposition after weaning

    Get PDF
    BACKGROUND: In rats, oral oleoyl-estrone (OE) decreases food intake and body lipid content. The aim of this study was to determine whether OE treatment affects the energy metabolism of pregnant rats and eventually, of their pups; i.e. changes in normal growth patterns and the onset of obesity after weaning. METHODS: Pregnant Wistar rats were treated with daily intragastric gavages of OE in 0.2 ml sunflower oil from days 11 to 21 of pregnancy (i.e. 10 nmol oleoyl-estrone/g/day). Control animals received only the vehicle. Plasma and hormone metabolites were determined together with variations in cellularity of adipose tissue. RESULTS: Treatment decreased food intake and lowered weight gain during late pregnancy, mainly because of reduced adipose tissue accumulation in different sites. OE-treated pregnant rats' metabolic pattern after delivery was similar to that of controls. Neonates from OE-treated rats weighed the same as those from controls. They also maintained the same growth rate up to weaning, but pups from OE-treated rats slowed their growth rate afterwards, despite only limited differences in metabolite concentrations. CONCLUSION: The OE influences on pup growth can be partially buffered by maternal lipid mobilization during the second half of pregnancy. This maternal metabolic "imprinting" may condition the eventual accumulation of adipose tissue after weaning, and its effects can affect the regulation of body weight up to adulthood

    Effect of cafeteria diet feeding on soleus intramyocellular lipid of Wistar rats

    Get PDF
    Background: The presence of lipid besides muscle fibres facilitates the energy supply for exercise, but it is also indicative of insulin resistance in the untrained. Muscle lipid is associated with increased dietary energy: hyperlipidic diets induce an increase in intramyocellular lipid deposition in skeletal muscle. Methods: In the present study we analyzed the changes in soleus (a red-fibre muscle) intracellular muscle content under a hyperlipidic (cafeteria) diet in Wistar rats. We also analyzed in parallel the mitochondrial content a relative index of energy output capability. Results: Cafeteria diet-fed rats contained more lipid and mitochondria per unit of muscle section area than controls. Conclusions: The correlation found in the increases of muscle lipid and mitochondria hit at this increase as an adaptation of muscle to oxidize excess energy substrates under conditions of excess energy availability, probably contributing to adaptive thermogenesis

    Oleoyl-estrone is a precursor of an estrone-derived ponderostat signal

    Get PDF
    Oleoyl-estrone (OE) is a powerful anti-obesity compound that decreases food intake, decreases insulin resistance and circulating cholesterol. OE stimulates a severe loss of body fat by decreasing adipose tissue lipid synthesis and maintaining lipolysis. Therefore, the body economy loses lipid energy because energy expenditure is maintained. This study analyses the discrepancy between OE effects and the distribution of labelled OE in plasma. Estrone radioimmunoassay of organic solvent plasma extracts of rats treated with OE showed the massive presence of acyl-estrone, but. saponification did not release estrone, but containing similar unknown compound. Analysis of label distribution in plasma after oral gavages of 3H-OE showed the presence of a more hydrophilic compound than OE or any estrogen as well as 3H2O, formed from 3H-OE in the acidic stomach medium. OE was not attached toa specific transporter in plasma. Through serum HPLC analysis we found W, a labelled derivative more hydrophilic than OE or estrone. The results were confirmed using 14C-OE. HPLC-MS/MS studies showed that plasma OE levels were one order of magnitude lower than those of W. When liver cell cytosols from rats laden with 3H-OE were incubated with nuclei from untreated rats, the OE-derived label (i.e., W's) was found attached to nuclear DNA. Neither estradiol nor estrone interfered with its binding. W is a fairly hydrophilic compound of low molecular weight containing the estrone nucleus, but it is not an ester because saponification or esterases do not yield estrone as OE does. It is concluded that OE acts through its conversion to W, its active form; which binds to a nuclear receptor different from that of estrogen. The estimated W serum levels are proportional to the pharmacological OE effects in vivo. We postulate W as a new type of hormone that exerts the full range of in vivo effects thus far attributed to OE. The full identification of W is anticipated to open the way for the development of new OE-like anti-obesity drugs

    Treatment of pregnant rats with oleoyl-estrone slows down pup fat deposition after weaning

    No full text
    BACKGROUND: In rats, oral oleoyl-estrone (OE) decreases food intake and body lipid content. The aim of this study was to determine whether OE treatment affects the energy metabolism of pregnant rats and eventually, of their pups; i.e. changes in normal growth patterns and the onset of obesity after weaning. METHODS: Pregnant Wistar rats were treated with daily intragastric gavages of OE in 0.2 ml sunflower oil from days 11 to 21 of pregnancy (i.e. 10 nmol oleoyl-estrone/g/day). Control animals received only the vehicle. Plasma and hormone metabolites were determined together with variations in cellularity of adipose tissue. RESULTS: Treatment decreased food intake and lowered weight gain during late pregnancy, mainly because of reduced adipose tissue accumulation in different sites. OE-treated pregnant rats' metabolic pattern after delivery was similar to that of controls. Neonates from OE-treated rats weighed the same as those from controls. They also maintained the same growth rate up to weaning, but pups from OE-treated rats slowed their growth rate afterwards, despite only limited differences in metabolite concentrations. CONCLUSION: The OE influences on pup growth can be partially buffered by maternal lipid mobilization during the second half of pregnancy. This maternal metabolic "imprinting" may condition the eventual accumulation of adipose tissue after weaning, and its effects can affect the regulation of body weight up to adulthood

    Plasma leptin turnover rates in lean and obese Zucker rats

    Get PDF
    Conscious female adult lean and obese Zucker rats were injected through the jugular vein with radioactive iodine-labeled murine leptin; in the ensuing 8 min, four blood samples were sequentially extracted from the carotid artery. The samples were used in a modified RIA for leptin, in which paired tubes received the same amount of either labeled or unlabeled leptin, thus allowing us to estimate both leptin levels and specific radioactivity. The data were used to determine the decay curve parameters from which the half-life of leptin (5.46 ± 0.23 min for lean rats and 6.99 ± 0.75 min for obese rats) as well as the size of its circulating pool (32 pmol/kg for lean rats and 267 pmol/kg for obese rats) and the overall degradation rate (96 fkat/kg for lean rats and 645 fkat/kg for obese rats) were estimated. These values are consistent with the hormonal role of leptin and the need for speedy changes in its levels in response to metabolic challenge

    Plasma leptin turnover rates in lean and obese Zucker rats

    No full text
    Conscious female adult lean and obese Zucker rats were injected through the jugular vein with radioactive iodine-labeled murine leptin; in the ensuing 8 min, four blood samples were sequentially extracted from the carotid artery. The samples were used in a modified RIA for leptin, in which paired tubes received the same amount of either labeled or unlabeled leptin, thus allowing us to estimate both leptin levels and specific radioactivity. The data were used to determine the decay curve parameters from which the half-life of leptin (5.46 ± 0.23 min for lean rats and 6.99 ± 0.75 min for obese rats) as well as the size of its circulating pool (32 pmol/kg for lean rats and 267 pmol/kg for obese rats) and the overall degradation rate (96 fkat/kg for lean rats and 645 fkat/kg for obese rats) were estimated. These values are consistent with the hormonal role of leptin and the need for speedy changes in its levels in response to metabolic challenge

    Effect of cafeteria diet feeding on soleus intramyocellular lipid of Wistar rats

    No full text
    Background: The presence of lipid besides muscle fibres facilitates the energy supply for exercise, but it is also indicative of insulin resistance in the untrained. Muscle lipid is associated with increased dietary energy: hyperlipidic diets induce an increase in intramyocellular lipid deposition in skeletal muscle. Methods: In the present study we analyzed the changes in soleus (a red-fibre muscle) intracellular muscle content under a hyperlipidic (cafeteria) diet in Wistar rats. We also analyzed in parallel the mitochondrial content a relative index of energy output capability. Results: Cafeteria diet-fed rats contained more lipid and mitochondria per unit of muscle section area than controls. Conclusions: The correlation found in the increases of muscle lipid and mitochondria hit at this increase as an adaptation of muscle to oxidize excess energy substrates under conditions of excess energy availability, probably contributing to adaptive thermogenesis
    corecore