61 research outputs found
Biopolymer-based multilayer capsules and beads made via templating : advantages, hurdles and perspectives
One of the undeniable trends in modern bioengineering and nanotechnology is the use of various biomolecules, primarily of a polymeric nature, for the design and formulation of novel functional materials for controlled and targeted drug delivery, bioimaging and theranostics, tissue engineering, and other bioapplications. Biocompatibility, biodegradability, the possibility of replicating natural cellular microenvironments, and the minimal toxicity typical of biogenic polymers are features that have secured a growing interest in them as the building blocks for biomaterials of the fourth generation. Many recent studies showed the promise of the hard-templating approach for the fabrication of nano- and microparticles utilizing biopolymers. This review covers these studies, bringing together up-to-date knowledge on biopolymer-based multilayer capsules and beads, critically assessing the progress made in this field of research, and outlining the current challenges and perspectives of these architectures. According to the classification of the templates, the review sequentially considers biopolymer structures templated on non-porous particles, porous particles, and crystal drugs. Opportunities for the functionalization of biopolymer-based capsules to tailor them toward specific bioapplications is highlighted in a separate section
Recommended from our members
Naturally derived nano- and micro-drug delivery vehicles: halloysite, vaterite and nanocellulose
Recent advances in drug delivery and controlled release had a great impact on bioscience, medicine and tissue engineering. Consequently, a variety of advanced drug delivery vehicles either have already reached the market or are approaching the phase of commercial production. Progressive growth of the drug delivery market has led to the necessity to earnestly concern about economically viable, up-scalable and sustainable technologies for a large-scale production of drug delivery carriers. We have identified three attractive natural sources of drug carriers: aluminosilicate clays, minerals of calcium carbonate, and cellulose. Three classes of drug delivery carriers derived from these natural materials are halloysite nanotubes, vaterite crystals and nanocellulose. These carriers can be produced using βgreenβ technologies from some of the most abundant sources on the Earth and have extremely high potential to meet all criteria applied for the manufacture of modern delivery carriers. We provide an up-to-date snapshot of these drug delivery vehicles towards their use for bioapplications, in particular for drug delivery and tissue engineering. The following research topics are addressed: (i) the availability, sources and methodologies used for production of these drug delivery vehicles, (ii) the drug loading and release mechanisms of these delivery vehicles, (iii) in vitro, in vivo, and clinical studies on these vehicles, and (iv) employment of these vehicles for tissue engineering. Finally, the prospects for vehiclesβ further development and industrialisation are critically assessed, highlighting most attractive future research directions such as the design of third generation active biomaterials
Recommended from our members
Porous alginate scaffolds assembled using vaterite CaCO3 crystals
Formulation of multifunctional biopolymer-based scaffolds is one of the major focuses in modern tissue engineering and regenerative medicine. Besides proper mechanical/chemical properties, an ideal scaffold should: (i) possess a well-tuned porous internal structure for cell seeding/growth and (ii) host bioactive molecules to be protected against biodegradation and presented to cells when required. Alginate hydrogels were extensively developed to serve as scaffolds, and recent advances in the hydrogel formulation demonstrate their applicability as βidealβ soft scaffolds. This review focuses on advanced porous alginate scaffolds (PAS) fabricated using hard templating on vaterite CaCO3 crystals. These novel tailor-made soft structures can be prepared at physiologically relevant conditions offering a high level of control over their internal structure and high performance for loading/release of bioactive macromolecules. The novel approach to assemble PAS is compared with traditional methods used for fabrication of porous alginate hydrogels. Finally, future perspectives and applications of PAS for advanced cell culture, tissue engineering, and drug testing are discussed
Effect of a Type of Loading on Stresses at a Planar Boundary of a Nanomaterial
Abstract A two-dimensional model of an elastic body at nanoscale is considered as a half-plane under the action of a periodic load at the boundary. An additional surface stress, and constitutive equations of the Gurtin-Murdoch surface linear elasticity are assumed. Using Goursat-Kolosov complex potentials and Muskhelisvili technique, the solution of the boundary value problem in the case of an arbitrary load is reduced to a hypersingular integral equation in an unknown surface stress. For the case of a periodic load, the solution of this equation is found in the form of Fourier series. The influence of the surface stress on the stresses at the boundary of the half-plane under the tangential and normal periodic loading is analyzed. In particular, it is found out the size effect which becomes apparent in the dependence of the stresses on a length of the load period of the order 10 nm. Moreover, the tangential stresses appear under the action of the normal loads
ΠΠΠΠΠΠΠΠΠΠ§ΠΠ‘ΠΠΠ ΠΠΠΠΠ« Π ΠΠ ΠΠΠΠ’ΠΠ¦ΠΠ―
Β Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature) are related. Β The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928].Β The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. BasedΒ on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time βvortexβ properties.Β Β Β ΠΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΎΠ±Π·ΠΎΡ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΡΠ²Π»Π΅Π½ΠΈΠΉ, ΡΠ²ΡΠ·Π°Π½Π½ΡΡ
Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΠΠ΅ΠΌΠ»ΠΈ Π² Π‘ΠΎΠ»Π½Π΅ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΈ ΠΠ°Π»Π°ΠΊΡΠΈΠΊΠ΅. ΠΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈ ΠΈΡ
Π²Π°ΡΠΈΠ°ΡΠΈΠΈ ΠΎΡΡΠ°ΠΆΠ°ΡΡΡΡ Π² Π³Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ
, ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΡΡΠΈΡ
Π² ΠΠ΅ΠΌΠ»Π΅, ΠΈ ΠΊΠΎΡΡΠ΅Π»ΠΈΡΡΡΡ Ρ Π΅Π΅ Π³Π΅ΠΎΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΠΎΠ»ΡΠΌΠΈ. Π€ΠΎΡΠΌΡΠ»ΠΈΡΡΠ΅ΡΡΡ Π²ΡΠ²ΠΎΠ΄ ΠΎ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠΈ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ Π³Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠ°ΠΌΠΈ ΠΈ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΠΌΠΈ (ΠΊΠΎΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Ρ Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅) ΡΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ.Β Π‘ΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π³Π΅ΠΎΡΡΠ΅Π΄Ρ, ΡΠ²Π»ΡΡΡΠ΅ΠΉΡΡ Π±Π»ΠΎΠΊΠΎΠ²ΠΎΠΉ ΠΏΠΎ ΡΠ²ΠΎΠ΅ΠΌΡ ΡΡΡΠΎΠ΅Π½ΠΈΡ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡΠΌΠΈ Ρ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠΌ ΡΠΈΠ»Ρ ΠΈ Π½ΠΎΠ²ΡΠΌ ΡΠΈΠΏΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ β ΠΌΠ΅Π΄Π»Π΅Π½Π½ΡΠΌΠΈ ΡΠΎΡΠ°ΡΠΈΠΎΠ½Π½ΡΠΌΠΈ Π²ΠΎΠ»Π½Π°ΠΌΠΈ [Vikulin, 2008a, 2008b, 2010]. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π΄Π»Ρ Π³Π΅ΠΎΒΡΡΠ΅Π΄Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½Ρ ΡΠ΅ΠΈΠ΄Π½ΡΠ΅ [Carey, 1953] ΡΠ²ΠΎΠΉΡΡΠ²Π° β ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΡΠ΅ΡΡ Π² ΡΠ²Π΅ΡΠ΄ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ [Leonov, 2008]. Π’Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π³Π΅ΠΎΡΡΠ΅Π΄Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΡΠ°Π·Π²ΠΈΠ²Π°Π΅ΠΌΠΎΠΉ Π°Π²ΡΠΎΡΠ°ΠΌΠΈ ΡΠΎΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΡΠΌ ΡΠ΅Π½Π·ΠΎΡΠΎΠΌ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013] ΠΎΠ±ΡΡΡΠ½ΠΈΡΡ Π΅Π΅ ΡΠ½Π΅ΡΠ³ΠΎΠ½Π°ΡΡΡΠ΅Π½Π½ΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π² Π²ΠΈΠ΄Π΅ Π²ΠΈΡ
ΡΠ΅Π²ΡΡ
Π³Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΡΡΠΊΡΡΡ [Lee, 1928].Β ΠΠ±ΡΡΠΆΠ΄Π°Π΅ΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΠΈ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π²ΠΎΠ»Π½, Π² ΠΎΡΠ½ΠΎΠ²Π΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π·Π°Π»ΠΎΠΆΠ΅Π½Π° ΠΈΠ΄Π΅Ρ ΠΈΡ
Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Ρ Π±Π»ΠΎΠΊΠ°ΠΌΠΈ Π·Π΅ΠΌΠ½ΠΎΠΉ ΠΊΠΎΡΡ [Braginsky et al., 1985]. Π€ΠΎΡΠΌΡΠ»ΠΈΡΡΠ΅ΡΡΡ Π²ΡΠ²ΠΎΠ΄ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΡΠ°ΠΊΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΒΠ²Π°Π½ΠΈΠ΅ΠΌ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π΄Π΅ΡΠ΅ΠΊΡΠΎΡΠ° ΠΌΠ΅Π΄Π»Π΅Π½Π½ΡΡ
ΡΠΎΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π²ΠΎΠ»Π½ ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΌ Π·Π°ΡΠ΅Π³ΠΈΡΡΡΠΈΡΠΎΠ²Π°ΡΡ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ Π²ΠΎΠ»Π½Ρ. ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ Π³Π΅ΠΎΠ³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΠΊΠ°ΠΊ ΡΠ΅ΠΎΡΠΈΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π° Ρ ΡΡΠ΅ΡΠΎΠΌ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠ΅Π» [Kondratiev, 2003], ΡΠ°ΠΊ ΠΈ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΡΡΠΈΠΊΠΈ [Gurbatov et al., 2008]. ΠΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠ΅ Π³Π΅ΠΎΒΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π²ΠΎΠ»Π½ΠΎΠ²ΡΡ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π°Π²ΡΠΎΡΠ°ΠΌ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠΈΡΡ Π³ΠΈΠΏΠΎΡΠ΅Π·Ρ ΠΎ ΠΏΡΠΈΡΠΎΠ΄Π΅ ΡΠΏΠΈΠ½Π° β ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΊΠ°ΠΊ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ Β«Π²ΠΈΡ
ΡΠ΅Π²ΡΡ
Β» ΡΠ²ΠΎΠΉΡΡΠ² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°βΠ²ΡΠ΅ΠΌΠ΅Π½ΠΈ.Β
ΠΠΠΠ ΠΠ¦ΠΠ― Π‘ΠΠΠ‘ΠΠΠ§ΠΠ‘ΠΠΠ Π ΠΠ£ΠΠΠΠΠΠ§ΠΠ‘ΠΠΠ ΠΠΠ’ΠΠΠΠΠ‘Π’Π ΠΠΠ ΠΠ ΠΠ―ΠΠΠΠΠΠ ΠΠΠΠΠΠΠΠΠ ΠΠΠΠΠΠΠΠΠΠ§ΠΠ‘ΠΠΠΠ ΠΠ ΠΠ¦ΠΠ‘Π‘Π
Publications about the earthquake foci migration have been reviewed. An importantΒ result of such studies is establishment of wave nature of seismic activity migration that isΒ manifested by two types of rotational waves; such waves are responsible for interactionΒ between earthquakes foci and propagate with different velocities. Waves determiningΒ long-range interaction of earthquake foci are classified as Type 1; their limiting velocitiesΒ range from 1 to 10 cm/s. Waves determining short-range interaction of foreshocks andΒ aftershocks of individual earthquakes are classified as Type 2; their velocities range fromΒ 1 to 10 km/s. According to the classification described in [Bykov, 2005], these two typesΒ of migration waves correspond to slow and fast tectonic waves.Β The most complete data on earthquakes (for a period over 4.1 million of years) andΒ volcanic eruptions (for 12 thousand years) of the planet are consolidated in a unifiedΒ systematic format and analyzed by methods developed by the authors. For the PacificΒ margin, Alpine-Himalayan belt and the Mid-Atlantic Ridge, which are the three mostΒ active zones of the Earth, new patterns of spatial and temporal distribution of seismic andΒ volcanic activity are revealed; they correspond to Type 1 of rotational waves. The waveΒ nature of the migration of seismic and volcanic activity is confirmed. A new approach toΒ solving problems of geodynamics is proposed with application of the data on migrationΒ of seismic and volcanic activity, which are consolidated in this study, in combination withΒ data on velocities of movement of tectonic plate boundaries. This approach is based onΒ the concept of integration of seismic, volcanic and tectonic processes that develop in theΒ block geomedium and interact with each other through rotating waves with a symmetricΒ stress tensor. The data obtained in this study give grounds to suggest that a geodynamicΒ value, that is mechanically analogous to an impulse, remains constant in such interactions.Β It is thus shown that the process of wave migration of geodynamic activity should beΒ described by models with strongly nonlinear equations of motion.ΠΡΠΎΠ²Π΅Π΄Π΅Π½ ΠΎΠ±Π·ΠΎΡ ΡΠ°Π±ΠΎΡ ΠΏΠΎ ΠΌΠΈΠ³ΡΠ°ΡΠΈΠΈ ΠΎΡΠ°Π³ΠΎΠ² Π·Π΅ΠΌΠ»Π΅ΡΡΡΡΠ΅Π½ΠΈΠΉ. ΠΠ°ΠΆΠ½ΡΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌΒ ΡΠ²ΠΈΠ»ΠΎΡΡ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Ρ ΠΌΠΈΠ³ΡΠ°ΡΠΈΠΈ ΡΠ΅ΠΉΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ,Β ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ΅ΡΡΡ Β Π΄Π²ΡΠΌΡ ΡΠΈΠΏΠ°ΠΌΠΈ ΡΠΎΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π²ΠΎΠ»Π½, ΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ Π·Π°Β Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΎΡΠ°Π³ΠΎΠ² Π·Π΅ΠΌΠ»Π΅ΡΡΡΡΠ΅Π½ΠΈΠΉ ΠΈ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½ΡΡΡΠΈΠΌΠΈΡΡ Ρ ΡΠ°Π·Π½ΡΠΌΠΈ ΡΠΊΠΎΡΠΎΡΡΡΠΌΠΈ. ΠΠ΅ΡΠ²ΠΎΠΌΡ ΡΠΈΠΏΡ Ρ ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΡΠΌΠΈ ΡΠΊΠΎΡΠΎΡΡΡΠΌΠΈ 1β10 ΡΠΌ/Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ Π²ΠΎΠ»Π½Ρ,Β ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΠ΅ Π΄Π°Π»ΡΠ½ΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅Π΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΎΡΠ°Π³ΠΎΠ² Π·Π΅ΠΌΠ»Π΅ΡΡΡΡΠ΅Π½ΠΈΠΉ, Π²ΡΠΎΡΠΎΠΌΡ β Ρ ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΡΠΌΠΈ ΡΠΊΠΎΡΠΎΡΡΡΠΌΠΈ 1β10 ΠΊΠΌ/Ρ β ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ Π²ΠΎΠ»Π½Ρ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΠ΅Β Π±Π»ΠΈΠ·ΠΊΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅Π΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΎΡΡΠΎΠΊΠΎΠ² ΠΈ Π°ΡΡΠ΅ΡΡΠΎΠΊΠΎΠ² Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ
ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΒ Π²Π·ΡΡΡΡ
ΠΎΡΠ°Π³ΠΎΠ² Π·Π΅ΠΌΠ»Π΅ΡΡΡΡΠ΅Π½ΠΈΠΉ. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ [Bykov, 2005], ΡΠ°ΠΊΠΈΠ΅ ΡΠΈΠΏΡΒ Π²ΠΎΠ»Π½ ΠΌΠΈΠ³ΡΠ°ΡΠΈΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ ΠΌΠ΅Π΄Π»Π΅Π½Π½ΡΠΌ ΠΈ Π±ΡΡΡΡΡΠΌ ΡΠ΅ΠΊΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌ Π²ΠΎΠ»Π½Π°ΠΌ.Β Π Π΅Π΄ΠΈΠ½ΠΎΠΌ ΡΠΎΡΠΌΠ°ΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΎ Π·Π΅ΠΌΠ»Π΅ΡΡΡΡΠ΅Π½ΠΈΡΡ
Π·Π°Β 4.1 ΡΡΡ. Π»Π΅Ρ ΠΈ ΠΈΠ·Π²Π΅ΡΠΆΠ΅Π½ΠΈΡΡ
Π²ΡΠ»ΠΊΠ°Π½ΠΎΠ² Π·Π° 12 ΡΡΡ. Π»Π΅Ρ. Π‘ΠΎΠ±ΡΠ°Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΠΈ ΠΏΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΡ
Π°Π²ΡΠΎΡΠ°ΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ.Β ΠΠ»Ρ ΡΡΠ΅Ρ
Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΏΠΎΡΡΠΎΠ² ΠΠ΅ΠΌΠ»ΠΈ β ΠΠ°ΡΠΈΡΠΈΠΊΠΈ, ΠΠ»ΡΠΏΠΈΠΉΡΠΊΠΎ-ΠΠΈΠΌΠ°Π»Π°ΠΉΡΠΊΠΎΠ³ΠΎΒ ΠΈ Π‘ΡΠ΅Π΄ΠΈΠ½Π½ΠΎ-ΠΡΠ»Π°Π½ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ β ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ Π½ΠΎΠ²ΡΠ΅, ΠΎΡΠ²Π΅ΡΠ°ΡΡΠΈΠ΅ ΠΏΠ΅ΡΠ²ΠΎΠΌΡ ΡΠΈΠΏΡ ΡΠΎΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π²ΠΎΠ»Π½, Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎ-Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡΒ ΡΠ΅ΠΉΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ Π²ΡΠ»ΠΊΠ°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ. ΠΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Π° Π²ΠΎΠ»Π½ΠΎΠ²Π°Ρ ΠΏΡΠΈΡΠΎΠ΄Π° ΠΈΡ
Β ΠΌΠΈΠ³ΡΠ°ΡΠΈΠΈ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π² ΡΠ°Π±ΠΎΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ Π² ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ Ρ Π΄Π°Π½Π½ΡΠΌΠΈ ΠΎ ΡΠΊΠΎΡΠΎΡΡΡΡ
Β Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π³ΡΠ°Π½ΠΈΡ ΡΠ΅ΠΊΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ»ΠΈΡ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΊ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ Π³Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ. Π ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ°ΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° Π·Π°Π»ΠΎΠΆΠ΅Π½Π°Β ΠΈΠ΄Π΅Ρ Π΅Π΄ΠΈΠ½ΡΡΠ²Π° ΡΠ΅ΠΉΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ, Π²ΡΠ»ΠΊΠ°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈ ΡΠ΅ΠΊΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ², ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡΠΈΡ
Π² Π±Π»ΠΎΠΊΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΡΡΠ΅Π΄Π΅ ΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΡ
ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌΒ ΡΠΎΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π²ΠΎΠ»Π½ Ρ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΡΠΌ ΡΠ΅Π½Π·ΠΎΡΠΎΠΌ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π°Π²ΡΠΎΡΠ°ΠΌΠΈ Π΄Π°Π½Π½ΡΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡΡ, ΡΡΠΎ ΠΏΡΠΈ ΡΠ°ΠΊΠΎΠΌ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ ΡΠΎΡ
ΡΠ°Π½ΡΠ΅ΡΡΡΒ Π³Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΌ Π°Π½Π°Π»ΠΎΠ³ΠΎΠΌ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΈΠΌΠΏΡΠ»ΡΡ.Β ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΎΡΠ΅ΡΡ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ ΠΌΠΈΠ³ΡΠ°ΡΠΈΠΈ Π³Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π΄ΠΎΠ»ΠΆΠ΅Π½Β ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΡΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Ρ ΡΠΈΠ»ΡΠ½ΠΎ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
Recommended from our members
Vaterite-nanosilver hybrids with antibacterial properties and pH-triggered release
Silver nanoparticles (AgNPs) have been used for over a century in various applications due to their distinctive properties. Nonetheless, the poor stability of AgNPs and adverse effects on living organisms have driven the search for materials able to protect and better control their release. Vaterite CaCO3 crystals have been studied in the last two decades as carriers for different drugs due to their biocompatibility, easy synthesis and pH-sensitive properties. Herein, AgNPs were loaded into vaterite to protect, store, and control their release, resulting in CaCO3/AgNPs hybrids. To tune the release of the AgNPs, the recrystallization of the hybrids into thermodynamically more stable calcite was studied and modulated with carboxymethyledextran (DexCM) and poly(4-styrenesulfonic acid) sodium salt (PSS), with the last one being able to stabilise the hybrids and prevent a premature release of the AgNPs at low contents (2%, w/w). The release of AgNPs from the hybrids was studied at pH 5 to 9, showing a pH-dependent release suppression for PSS-stabilised hybrids. Various mathematical models were applied to clarify the release mechanism, confirming the role of PSS in stabilising and targeting the release of AgNPs. The antibacterial studies demonstrated that the hybrids protect the AgNPs without affecting their activity, with the released nanoparticles being effective against Escherichia coli, methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Overall, this work sheds light on the release mechanisms of AgNPs from the inorganic hybrids helping to foresee the release profiles of other compounds from vaterite
Hybrid MucinβVaterite Microspheres for Delivery of Proteolytic Enzyme Chymotrypsin
Abstract
While the enteral delivery of proteolytic enzymes is widely established for combating many diseases as an alternative to antibiotic treatment, their local delivery only emerges as administration route enabling sustained release in a controlled manner on site. The latest requires the development of drug delivery systems suitable for encapsulation and preservation of enzymatic proteolytic activity. This study proposes hybrid microspheres made of mucin and biodegradable porous crystals of calcium carbonate (CC) as the carriers for chymotrypsin (CTR) delivery. CTR is impregnated into CC and hybrid CC/mucin (CCM) microspheres by means of sorption without any chemical modification. The loading of the CC with mucin enhances CTR retention on hybrid microspheres (adsorption capacity of β8.7Β mg gβ1Β vs 4.7Β mg gβ1), recharging crystal surface due to the presence of mucin and diminishing the average pore diameter of the crystals from 25 to 8Β nm. Mucin also retards recrystallization of vaterite into nonporous calcite improving stability of CCM microspheres upon storage. Proteolytic activity of CTR is preserved in both CC and CCM microspheres, being pH dependent. Temperatureβinduced inactivation of CTR significantly diminishes by CTR encapsulation into CC and CCM microspheres. Altogether, these findings indicate promises of hybrid mucinβvaterite microspheres for mucosal application of proteases
Immobilization of Antioxidant Enzyme Catalase on Porous Hybrid Microparticles of Vaterite with Mucin
Catalase is one of the crucial antioxidant enzymes with diverse applications in textile, food industries, wastewater treatment, cosmetics, and pharmaceutics, which, however, is highly sensitive to environmental challenges. Resisting the loss of activity and prolongation of formulation storage can be achieved via the catalase entrapment into insoluble carriers. Affordable and degradable vaterite is proposed as amicable material for catalase immobilization. To improve the carrier properties of the vaterite, it was coβprecipitated with mucin from the pig's stomach producing ca 5βΞΌm hybrid mucin/vaterite microparticles. Catalase is impregnated into the crystals by means of adsorption without chemical modifications. The presence of mucin matrix partially hinders catalase penetration into the crystals and reduces the adsorption capacity (for 0.1βmgβmLβ1 catalase, ca 2.3 vs ca 1.5βmgβgβ1 for pristine and hybrid microparticles, respectively) but significantly promotes the protection of antioxidant activity upon storage and under the action of temperature, organic solvent (acetonitrile), and proteolytic enzyme (trypsin). Hybrid microcrystals are pHβsensitive and better retain the enzyme at pH 3β5 due to catalaseβmucin complexation. Immobilized catalase can be used for 5β6 consecutive cycles until it loses catalytic activity. Altogether, these findings indicate promises of hybrid mucin/vaterite microparticles for immobilization of antioxidant enzymes
ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΉ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ° Π‘ΡΠΏΠ΅ΡΡΡΠΈΠΌ Π² ΠΌΠ°Π»ΡΡ Π΄ΠΎΠ·Π°Ρ Π½Π° ΡΡΠ°ΠΏΠ΅ Π°Π΄Π°ΠΏΡΠ°ΡΠΈΠΈ ΠΌΠΈΠΊΡΠΎΡΠ°ΡΡΠ΅Π½ΠΈΠΉ ΠΆΠΈΠΌΠΎΠ»ΠΎΡΡΠΈ (Lonicera L.) ΠΏΠΎΠ΄ΡΠ΅ΠΊΡΠΈΠΈ ΡΠΈΠ½Π΅ΠΉ (Caeruleae Rehd.) ΠΊ Π½Π΅ΡΡΠ΅ΡΠΈΠ»ΡΠ½ΡΠΌ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ Ρ ΡΡΠ΅ΡΠΎΠΌ ΠΏΠΎΡΠ»Π΅Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π° ΡΡΠ°ΠΏΠ΅ Π΄ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ
Relevance. In recent years, interest in the edible honeysuckle culture has increased in Russia, the wide distribution of which is hampered by the lack of quality planting material. The technology of clonal micropropagation allows for a short time to obtain a large amount of honeysuckle planting material, more than a thousand regenerated plants per year from one meristematic apex introduced into an in vitro culture. It is hundreds of times more than in traditional methods of vegetative propagation. Adaptation to non-sterile conditions is the final and most crucial stage of clonal micropropagation, the loss of which can be from 50 to 90%. It should be noted that there is practically no research on how the further development of adapted honeysuckle plants takes place during subsequent growing.Methods. Researching of growth regulators of the new generation Superstim 1 and Superstim 2 effect in low and ultra-low doses on the survival rates and development of honeysuckle plants at the stages of adaptation subsequent growing.Results. Superstim 1 is more effective at physiological concentrations β 1 x 10-7 and in the field of ultra-low doses β 1 x 10-14, 1 x 10-15%. At the stage of subsequent growing, a positive after-effect of physiological concentrations β 1x10-3 and 1x10-7 was observed, and an ultra-low dose β 1x10-17%. The growth regulator Superstim 2 at the stages of adaptation and subsequent growing is effectively used only in one concentration β 1x10-16%. The additional foliar treatments at the stage of subsequent growing are not necessary.Β ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ. Π ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ Π³ΠΎΠ΄Ρ Π² Π ΠΎΡΡΠΈΠΈ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ ΠΊ ΠΊΡΠ»ΡΡΡΡΠ΅ ΠΆΠΈΠΌΠΎΠ»ΠΎΡΡΠΈ ΡΡΠ΅Π΄ΠΎΠ±Π½ΠΎΠΉ, ΡΠΈΡΠΎΠΊΠΎΠ΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ΄Π΅ΡΠΆΠΈΠ²Π°Π΅ΡΡΡ ΠΈΠ·-Π·Π° Π΄Π΅ΡΠΈΡΠΈΡΠ° ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΠ°Π΄ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°. Π’Π΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡ ΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π·Π° ΠΊΠΎΡΠΎΡΠΊΠΈΠΉ ΡΡΠΎΠΊ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π±ΠΎΠ»ΡΡΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠΎΡΠ°Π΄ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΆΠΈΠΌΠΎΠ»ΠΎΡΡΠΈ, Π±ΠΎΠ»Π΅Π΅ ΡΡΡΡΡΠΈ ΡΠ°ΡΡΠ΅Π½ΠΈΠΉ-ΡΠ΅Π³Π΅Π½Π΅ΡΠ°Π½ΡΠΎΠ² Π² Π³ΠΎΠ΄ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π²Π²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ Π² ΠΊΡΠ»ΡΡΡΡΡ in vitro ΠΌΠ΅ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°ΠΏΠ΅ΠΊΡΠ°, ΡΡΠΎ Π² ΡΠΎΡΠ½ΠΈ ΡΠ°Π· Π±ΠΎΠ»ΡΡΠ΅, ΡΠ΅ΠΌ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π²Π΅Π³Π΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ. ΠΠ΄Π°ΠΏΡΠ°ΡΠΈΡ ΠΊ Π½Π΅ΡΡΠ΅ΡΠΈΠ»ΡΠ½ΡΠΌ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ Π·Π°ΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΡΠΌ ΡΡΠ°ΠΏΠΎΠΌ ΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ, ΠΏΠΎΡΠ΅ΡΠΈ Π½Π° ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΌΠΎΠ³ΡΡ ΡΠΎΡΡΠ°Π²Π»ΡΡΡ ΠΎΡ 50 Π΄ΠΎ 90% ΠΌΠ΅ΡΠΈΠΊΠ»ΠΎΠ½ΠΎΠ². Π‘Π»Π΅Π΄ΡΠ΅Ρ ΠΎΡΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π½Π΅Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΎ ΡΠΎΠΌ, ΠΊΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π΅ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ Π°Π΄Π°ΠΏΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ°ΡΡΠ΅Π½ΠΈΠΉ ΠΆΠΈΠΌΠΎΠ»ΠΎΡΡΠΈ ΠΏΡΠΈ Π΄ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΠΈ.ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ°. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π²Π»ΠΈΡΠ½ΠΈΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΡ Π‘ΡΠΏΠ΅ΡΡΡΠΈΠΌ 1 ΠΈ Π‘ΡΠΏΠ΅ΡΡΡΠΈΠΌ 2 Π² ΠΌΠ°Π»ΡΡ
ΠΈ ΡΠ²Π΅ΡΡ
ΠΌΠ°Π»ΡΡ
Π΄ΠΎΠ·Π°Ρ
Π½Π° ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΠΏΡΠΈΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡΠΈ ΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠ°ΡΡΠ΅Π½ΠΈΠΉ ΠΆΠΈΠΌΠΎΠ»ΠΎΡΡΠΈ Π½Π° ΡΡΠ°ΠΏΠ°Ρ
Π°Π΄Π°ΠΏΡΠ°ΡΠΈΠΈ ΠΈ Π΄ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΡΡΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠ΅ΠΏΠ°ΡΠ°Ρ Π‘ΡΠΏΠ΅ΡΡΡΠΈΠΌ 1 Π±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π΅Π½ Π² ΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ β 1x10-7% ΠΈ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠ²Π΅ΡΡ
ΠΌΠ°Π»ΡΡ
Π΄ΠΎΠ· β 1x10-14, 1x10-15%. ΠΠ° ΡΡΠ°ΠΏΠ΅ Π΄ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ Π²ΡΡΠ²Π»Π΅Π½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΏΠΎΡΠ»Π΅Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ β 1x10-3, 1x10-7%, ΠΈ ΡΠ²Π΅ΡΡ
ΠΌΠ°Π»ΠΎΠΉ Π΄ΠΎΠ·Ρ β 1x10-17%. ΠΡΠ΅ΠΏΠ°ΡΠ°Ρ Π‘ΡΠΏΠ΅ΡΡΡΠΈΠΌ 2 Π½Π° ΡΡΠ°ΠΏΠ°Ρ
Π°Π΄Π°ΠΏΡΠ°ΡΠΈΠΈ ΠΈ Π΄ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π² ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ β 1x10-16%. Π Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΡ
Π½Π΅ΠΊΠΎΡΠ½Π΅Π²ΡΡ
ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ°Ρ
Π½Π° ΡΡΠ°ΠΏΠ΅ Π΄ΠΎΡΠ°ΡΠΈΠ²Π°Π½ΠΈΡ Π½Π΅Ρ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ.
- β¦