61 research outputs found

    Biopolymer-based multilayer capsules and beads made via templating : advantages, hurdles and perspectives

    Get PDF
    One of the undeniable trends in modern bioengineering and nanotechnology is the use of various biomolecules, primarily of a polymeric nature, for the design and formulation of novel functional materials for controlled and targeted drug delivery, bioimaging and theranostics, tissue engineering, and other bioapplications. Biocompatibility, biodegradability, the possibility of replicating natural cellular microenvironments, and the minimal toxicity typical of biogenic polymers are features that have secured a growing interest in them as the building blocks for biomaterials of the fourth generation. Many recent studies showed the promise of the hard-templating approach for the fabrication of nano- and microparticles utilizing biopolymers. This review covers these studies, bringing together up-to-date knowledge on biopolymer-based multilayer capsules and beads, critically assessing the progress made in this field of research, and outlining the current challenges and perspectives of these architectures. According to the classification of the templates, the review sequentially considers biopolymer structures templated on non-porous particles, porous particles, and crystal drugs. Opportunities for the functionalization of biopolymer-based capsules to tailor them toward specific bioapplications is highlighted in a separate section

    Effect of a Type of Loading on Stresses at a Planar Boundary of a Nanomaterial

    Get PDF
    Abstract A two-dimensional model of an elastic body at nanoscale is considered as a half-plane under the action of a periodic load at the boundary. An additional surface stress, and constitutive equations of the Gurtin-Murdoch surface linear elasticity are assumed. Using Goursat-Kolosov complex potentials and Muskhelisvili technique, the solution of the boundary value problem in the case of an arbitrary load is reduced to a hypersingular integral equation in an unknown surface stress. For the case of a periodic load, the solution of this equation is found in the form of Fourier series. The influence of the surface stress on the stresses at the boundary of the half-plane under the tangential and normal periodic loading is analyzed. In particular, it is found out the size effect which becomes apparent in the dependence of the stresses on a length of the load period of the order 10 nm. Moreover, the tangential stresses appear under the action of the normal loads

    Π“Π•ΠžΠ”Π˜ΠΠΠœΠ˜Π§Π•Π‘ΠšΠ˜Π• Π’ΠžΠ›ΠΠ« И Π“Π ΠΠ’Π˜Π’ΠΠ¦Π˜Π―

    Get PDF
    Β Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature) are related. Β The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928].Β The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. BasedΒ on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time β€˜vortex’ properties.Β Β Β ΠŸΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ ΠΎΠ±Π·ΠΎΡ€ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… явлСний, связанных с двиТСниями Π—Π΅ΠΌΠ»ΠΈ Π² Π‘ΠΎΠ»Π½Π΅Ρ‡Π½ΠΎΠΉ систСмС ΠΈ Π“Π°Π»Π°ΠΊΡ‚ΠΈΠΊΠ΅. Π­Ρ‚ΠΈ двиТСния ΠΈ ΠΈΡ… Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΈ ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‚ΡΡ Π² гСологичСских процСссах, происходящих Π² Π—Π΅ΠΌΠ»Π΅, ΠΈ ΠΊΠΎΡ€Ρ€Π΅Π»ΠΈΡ€ΡƒΡŽΡ‚ с Π΅Π΅ гСофизичСскими полями. ЀормулируСтся Π²Ρ‹Π²ΠΎΠ΄ ΠΎ сущСствовании взаимосвязи ΠΌΠ΅ΠΆΠ΄Ρƒ гСодинамичСскими процСссами ΠΈ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ (космичСской ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ Π² Ρ‚ΠΎΠΌ числС) явлСниями. БостояниС гСосрСды, ΡΠ²Π»ΡΡŽΡ‰Π΅ΠΉΡΡ Π±Π»ΠΎΠΊΠΎΠ²ΠΎΠΉ ΠΏΠΎ своСму ΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΡŽ, опрСдСляСтся напряТСниями с ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠΌ силы ΠΈ Π½ΠΎΠ²Ρ‹ΠΌ Ρ‚ΠΈΠΏΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – ΠΌΠ΅Π΄Π»Π΅Π½Π½Ρ‹ΠΌΠΈ Ρ€ΠΎΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ Π²ΠΎΠ»Π½Π°ΠΌΠΈ [Vikulin, 2008a, 2008b, 2010]. Показано, Ρ‡Ρ‚ΠΎ для гСо­срСды Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ Ρ€Π΅ΠΈΠ΄Π½Ρ‹Π΅ [Carey, 1953] свойства – ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Ρ‚Π΅Ρ‡ΡŒ Π² Ρ‚Π²Π΅Ρ€Π΄ΠΎΠΌ состоянии [Leonov, 2008]. Π’Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ гСосрСды позволяСт Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Ρ€Π°Π·Π²ΠΈΠ²Π°Π΅ΠΌΠΎΠΉ Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ Ρ€ΠΎΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ с симмСтричным Ρ‚Π΅Π½Π·ΠΎΡ€ΠΎΠΌ напряТСний [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013] ΠΎΠ±ΡŠΡΡΠ½ΠΈΡ‚ΡŒ Π΅Π΅ энСргонасыщСнноС состояниС ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ двиТСния Π² Π²ΠΈΠ΄Π΅ Π²ΠΈΡ…Ρ€Π΅Π²Ρ‹Ρ… гСологичСских структур [Lee, 1928].Β ΠžΠ±ΡΡƒΠΆΠ΄Π°Π΅Ρ‚ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ рСгистрации Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½, Π² основС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π·Π°Π»ΠΎΠΆΠ΅Π½Π° идСя ΠΈΡ… взаимодСйствия с Π±Π»ΠΎΠΊΠ°ΠΌΠΈ Π·Π΅ΠΌΠ½ΠΎΠΉ ΠΊΠΎΡ€Ρ‹ [Braginsky et al., 1985]. ЀормулируСтся Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Ρ‚Π°ΠΊΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ с использо­ваниСм Π² качСствС Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΌΠ΅Π΄Π»Π΅Π½Π½Ρ‹Ρ… Ρ€ΠΎΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ оказываСтся Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ Π·Π°Ρ€Π΅Π³ΠΈΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Π²ΠΎΠ»Π½Ρ‹. ОписаниС Π³Π΅ΠΎΠ³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΊΠ°ΠΊ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ энСргии Ρ‚Π΅Π» [Kondratiev, 2003], Ρ‚Π°ΠΊ ΠΈ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ физичСской акустики [Gurbatov et al., 2008]. ΠžΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ гСо­физичСских ΠΈ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ΠΎΠ²Ρ‹Ρ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π°Π²Ρ‚ΠΎΡ€Π°ΠΌ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΡ‚ΡŒ Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρƒ ΠΎ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π΅ спина – собствСнного ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° ΠΊΠ°ΠΊ проявлСния Β«Π²ΠΈΡ…Ρ€Π΅Π²Ρ‹Ρ…Β» свойств пространства–врСмСни.Β 

    ΠœΠ˜Π“Π ΠΠ¦Π˜Π― Π‘Π•Π™Π‘ΠœΠ˜Π§Π•Π‘ΠšΠžΠ™ И Π’Π£Π›ΠšΠΠΠ˜Π§Π•Π‘ΠšΠžΠ™ ΠΠšΠ’Π˜Π’ΠΠžΠ‘Π’Π˜ КАК ΠŸΠ ΠžΠ―Π’Π›Π•ΠΠ˜Π• Π’ΠžΠ›ΠΠžΠ’ΠžΠ“Πž Π“Π•ΠžΠ”Π˜ΠΠΠœΠ˜Π§Π•Π‘ΠšΠžΠ“Πž ΠŸΠ ΠžΠ¦Π•Π‘Π‘Π

    Get PDF
    Publications about the earthquake foci migration have been reviewed. An importantΒ result of such studies is establishment of wave nature of seismic activity migration that isΒ manifested by two types of rotational waves; such waves are responsible for interactionΒ between earthquakes foci and propagate with different velocities. Waves determiningΒ long-range interaction of earthquake foci are classified as Type 1; their limiting velocitiesΒ range from 1 to 10 cm/s. Waves determining short-range interaction of foreshocks andΒ aftershocks of individual earthquakes are classified as Type 2; their velocities range fromΒ 1 to 10 km/s. According to the classification described in [Bykov, 2005], these two typesΒ of migration waves correspond to slow and fast tectonic waves.Β The most complete data on earthquakes (for a period over 4.1 million of years) andΒ volcanic eruptions (for 12 thousand years) of the planet are consolidated in a unifiedΒ systematic format and analyzed by methods developed by the authors. For the PacificΒ margin, Alpine-Himalayan belt and the Mid-Atlantic Ridge, which are the three mostΒ active zones of the Earth, new patterns of spatial and temporal distribution of seismic andΒ volcanic activity are revealed; they correspond to Type 1 of rotational waves. The waveΒ nature of the migration of seismic and volcanic activity is confirmed. A new approach toΒ solving problems of geodynamics is proposed with application of the data on migrationΒ of seismic and volcanic activity, which are consolidated in this study, in combination withΒ data on velocities of movement of tectonic plate boundaries. This approach is based onΒ the concept of integration of seismic, volcanic and tectonic processes that develop in theΒ block geomedium and interact with each other through rotating waves with a symmetricΒ stress tensor. The data obtained in this study give grounds to suggest that a geodynamicΒ value, that is mechanically analogous to an impulse, remains constant in such interactions.Β It is thus shown that the process of wave migration of geodynamic activity should beΒ described by models with strongly nonlinear equations of motion.ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ ΠΎΠ±Π·ΠΎΡ€ Ρ€Π°Π±ΠΎΡ‚ ΠΏΠΎ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ ΠΎΡ‡Π°Π³ΠΎΠ² зСмлСтрясСний. Π’Π°ΠΆΠ½Ρ‹ΠΌ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌΒ ΡΠ²ΠΈΠ»ΠΎΡΡŒ установлСниС Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ сСйсмичСской активности, которая осущСствляСтся  двумя Ρ‚ΠΈΠΏΠ°ΠΌΠΈ Ρ€ΠΎΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½, отвСтствСнными за взаимодСйствиС ΠΎΡ‡Π°Π³ΠΎΠ² зСмлСтрясСний ΠΈ Ρ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡŽΡ‰ΠΈΠΌΠΈΡΡ с Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ скоростями. ΠŸΠ΅Ρ€Π²ΠΎΠΌΡƒ Ρ‚ΠΈΠΏΡƒ с ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ скоростями 1–10 см/с ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π²ΠΎΠ»Π½Ρ‹,Β ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠ΅ Π΄Π°Π»ΡŒΠ½ΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ взаимодСйствиС ΠΎΡ‡Π°Π³ΠΎΠ² зСмлСтрясСний, Π²Ρ‚ΠΎΡ€ΠΎΠΌΡƒ – с ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ скоростями 1–10 ΠΊΠΌ/с – ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π²ΠΎΠ»Π½Ρ‹, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠ΅Β Π±Π»ΠΈΠ·ΠΊΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ взаимодСйствиС Ρ„ΠΎΡ€ΡˆΠΎΠΊΠΎΠ² ΠΈ Π°Ρ„Ρ‚Π΅Ρ€ΡˆΠΎΠΊΠΎΠ² Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΒ Π²Π·ΡΡ‚Ρ‹Ρ… ΠΎΡ‡Π°Π³ΠΎΠ² зСмлСтрясСний. Богласно классификации [Bykov, 2005], Ρ‚Π°ΠΊΠΈΠ΅ Ρ‚ΠΈΠΏΡ‹Β Π²ΠΎΠ»Π½ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΌΠ΅Π΄Π»Π΅Π½Π½Ρ‹ΠΌ ΠΈ быстрым тСктоничСским Π²ΠΎΠ»Π½Π°ΠΌ.Β Π’ Π΅Π΄ΠΈΠ½ΠΎΠΌ Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Π΅ прСдставлСны Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ зСмлСтрясСниях Π·Π°Β 4.1 тыс. Π»Π΅Ρ‚ ΠΈ извСрТСниях Π²ΡƒΠ»ΠΊΠ°Π½ΠΎΠ² Π·Π° 12 тыс. Π»Π΅Ρ‚. Π‘ΠΎΠ±Ρ€Π°Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ систСматизированы ΠΈ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ. Для Ρ‚Ρ€Π΅Ρ… Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… поясов Π—Π΅ΠΌΠ»ΠΈ – ΠŸΠ°Ρ†ΠΈΡ„ΠΈΠΊΠΈ, Альпийско-Гималайского и Π‘Ρ€Π΅Π΄ΠΈΠ½Π½ΠΎ-АтлантичСского – установлСны Π½ΠΎΠ²Ρ‹Π΅, ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‰ΠΈΠ΅ ΠΏΠ΅Ρ€Π²ΠΎΠΌΡƒ Ρ‚ΠΈΠΏΡƒ Ρ€ΠΎΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½, закономСрности пространствСнно-Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ распрСдСлСния сСйсмичСской ΠΈ вулканичСской активности. ΠŸΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° волновая ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π° ΠΈΡ…Β ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅ Π΄Π°Π½Π½Ρ‹Π΅ Π² совокупности с Π΄Π°Π½Π½Ρ‹ΠΌΠΈ ΠΎ скоростях двиТСния Π³Ρ€Π°Π½ΠΈΡ† тСктоничСских ΠΏΠ»ΠΈΡ‚ прСдлагаСтся ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π² качСствС Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ Π·Π°Π΄Π°Ρ‡ Π³Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ. Π’ основС Ρ‚Π°ΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° залоТСна идСя Сдинства сСйсмичСского, вулканичСского ΠΈ тСктоничСского процСссов, ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°ΡŽΡ‰ΠΈΡ… Π² Π±Π»ΠΎΠΊΠΎΠ²ΠΎΠΉ гСосрСдС ΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΌΠ΅ΠΆΠ΄Ρƒ собой посрСдством ротационных Π²ΠΎΠ»Π½ с симмСтричным Ρ‚Π΅Π½Π·ΠΎΡ€ΠΎΠΌ напряТСний. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Ρ‚Π°ΠΊΠΎΠΌ взаимодСйствии сохраняСтся гСодинамичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, мСханичСским Π°Π½Π°Π»ΠΎΠ³ΠΎΠΌ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ являСтся ΠΈΠΌΠΏΡƒΠ»ΡŒΡ. Показано, Ρ‡Ρ‚ΠΎ процСсс Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ гСодинамичСской активности Π΄ΠΎΠ»ΠΆΠ΅Π½Β ΠΎΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒΡΡ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ с сильно Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌΠΈ уравнСниями двиТСния

    Hybrid Mucin‐Vaterite Microspheres for Delivery of Proteolytic Enzyme Chymotrypsin

    Get PDF
    Abstract While the enteral delivery of proteolytic enzymes is widely established for combating many diseases as an alternative to antibiotic treatment, their local delivery only emerges as administration route enabling sustained release in a controlled manner on site. The latest requires the development of drug delivery systems suitable for encapsulation and preservation of enzymatic proteolytic activity. This study proposes hybrid microspheres made of mucin and biodegradable porous crystals of calcium carbonate (CC) as the carriers for chymotrypsin (CTR) delivery. CTR is impregnated into CC and hybrid CC/mucin (CCM) microspheres by means of sorption without any chemical modification. The loading of the CC with mucin enhances CTR retention on hybrid microspheres (adsorption capacity of β‰ˆ8.7Β mg gβˆ’1Β vs 4.7Β mg gβˆ’1), recharging crystal surface due to the presence of mucin and diminishing the average pore diameter of the crystals from 25 to 8Β nm. Mucin also retards recrystallization of vaterite into nonporous calcite improving stability of CCM microspheres upon storage. Proteolytic activity of CTR is preserved in both CC and CCM microspheres, being pH dependent. Temperature‐induced inactivation of CTR significantly diminishes by CTR encapsulation into CC and CCM microspheres. Altogether, these findings indicate promises of hybrid mucin‐vaterite microspheres for mucosal application of proteases

    Immobilization of Antioxidant Enzyme Catalase on Porous Hybrid Microparticles of Vaterite with Mucin

    Get PDF
    Catalase is one of the crucial antioxidant enzymes with diverse applications in textile, food industries, wastewater treatment, cosmetics, and pharmaceutics, which, however, is highly sensitive to environmental challenges. Resisting the loss of activity and prolongation of formulation storage can be achieved via the catalase entrapment into insoluble carriers. Affordable and degradable vaterite is proposed as amicable material for catalase immobilization. To improve the carrier properties of the vaterite, it was co‐precipitated with mucin from the pig's stomach producing ca 5 μm hybrid mucin/vaterite microparticles. Catalase is impregnated into the crystals by means of adsorption without chemical modifications. The presence of mucin matrix partially hinders catalase penetration into the crystals and reduces the adsorption capacity (for 0.1 mg mLβˆ’1 catalase, ca 2.3 vs ca 1.5 mg gβˆ’1 for pristine and hybrid microparticles, respectively) but significantly promotes the protection of antioxidant activity upon storage and under the action of temperature, organic solvent (acetonitrile), and proteolytic enzyme (trypsin). Hybrid microcrystals are pH‐sensitive and better retain the enzyme at pH 3–5 due to catalase‐mucin complexation. Immobilized catalase can be used for 5–6 consecutive cycles until it loses catalytic activity. Altogether, these findings indicate promises of hybrid mucin/vaterite microparticles for immobilization of antioxidant enzymes

    Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ примСнСния ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΉ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° БупСрстим Π² ΠΌΠ°Π»Ρ‹Ρ… Π΄ΠΎΠ·Π°Ρ… Π½Π° этапС Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ микрорастСний Тимолости (Lonicera L.) подсСкции синСй (Caeruleae Rehd.) ΠΊ Π½Π΅ΡΡ‚Π΅Ρ€ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ условиям с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ послСдСйствия Π½Π° этапС доращивания

    Get PDF
    Relevance. In recent years, interest in the edible honeysuckle culture has increased in Russia, the wide distribution of which is hampered by the lack of quality planting material. The technology of clonal micropropagation allows for a short time to obtain a large amount of honeysuckle planting material, more than a thousand regenerated plants per year from one meristematic apex introduced into an in vitro culture. It is hundreds of times more than in traditional methods of vegetative propagation. Adaptation to non-sterile conditions is the final and most crucial stage of clonal micropropagation, the loss of which can be from 50 to 90%. It should be noted that there is practically no research on how the further development of adapted honeysuckle plants takes place during subsequent growing.Methods. Researching of growth regulators of the new generation Superstim 1 and Superstim 2 effect in low and ultra-low doses on the survival rates and development of honeysuckle plants at the stages of adaptation subsequent growing.Results. Superstim 1 is more effective at physiological concentrations – 1 x 10-7 and in the field of ultra-low doses – 1 x 10-14, 1 x 10-15%. At the stage of subsequent growing, a positive after-effect of physiological concentrations – 1x10-3 and 1x10-7 was observed, and an ultra-low dose – 1x10-17%. The growth regulator Superstim 2 at the stages of adaptation and subsequent growing is effectively used only in one concentration – 1x10-16%. The additional foliar treatments at the stage of subsequent growing are not necessary.Β ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. Π’ послСдниС Π³ΠΎΠ΄Ρ‹ Π² России увСличиваСтся интСрСс ΠΊ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅ Тимолости съСдобной, ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ распространСниС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ сдСрТиваСтся ΠΈΠ·-Π·Π° Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π° качСствСнного посадочного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. ВСхнология клонального микроразмноТСния позволяСт Π·Π° ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΉ срок ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ большоС количСство посадочного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Тимолости, Π±ΠΎΠ»Π΅Π΅ тысячи растСний-Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Π½Ρ‚ΠΎΠ² Π² Π³ΠΎΠ΄ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π²Π²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρƒ in vitro мСристСматичСского апСкса, Ρ‡Ρ‚ΠΎ Π² сотни Ρ€Π°Π· большС, Ρ‡Π΅ΠΌ ΠΏΡ€ΠΈ использовании Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π²Π΅Π³Π΅Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ размноТСния. Адаптация ΠΊ Π½Π΅ΡΡ‚Π΅Ρ€ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ условиям являСтся Π·Π°ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ отвСтствСнным этапом клонального микроразмноТСния, ΠΏΠΎΡ‚Π΅Ρ€ΠΈ Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΌΠΎΠ³ΡƒΡ‚ ΡΠΎΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ ΠΎΡ‚ 50 Π΄ΠΎ 90% ΠΌΠ΅Ρ€ΠΈΠΊΠ»ΠΎΠ½ΠΎΠ². Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ практичСски Π½Π΅Ρ‚ исслСдований ΠΎ Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ происходит дальнСйшСС Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Π°Π΄Π°ΠΏΡ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… растСний Тимолости ΠΏΡ€ΠΈ Π΄ΠΎΡ€Π°Ρ‰ΠΈΠ²Π°Π½ΠΈΠΈ.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ°. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ влияния ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Π½ΠΎΠ²ΠΎΠ³ΠΎ поколСния БупСрстим 1 ΠΈ БупСрстим 2 Π² ΠΌΠ°Π»Ρ‹Ρ… ΠΈ свСрхмалых Π΄ΠΎΠ·Π°Ρ… Π½Π° ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ приТиваСмости ΠΈ развития растСний Тимолости Π½Π° этапах Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ ΠΈ доращивания.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ВыявлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ БупСрстим 1 Π±ΠΎΠ»Π΅Π΅ эффСктивСн Π² физиологичСской ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ – 1x10-7% ΠΈ Π² области свСрхмалых Π΄ΠΎΠ· – 1x10-14, 1x10-15%. На этапС доращивания выявлСно ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ послСдСйствиС физиологичСских ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ – 1x10-3, 1x10-7%, ΠΈ свСрхмалой Π΄ΠΎΠ·Ρ‹ – 1x10-17%. ΠŸΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ БупСрстим 2 Π½Π° этапах Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ ΠΈ доращивания эффСктивно ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ – 1x10-16%. Π’ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π½Π΅ΠΊΠΎΡ€Π½Π΅Π²Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ°Ρ… Π½Π° этапС доращивания Π½Π΅Ρ‚ нСобходимости.
    • …
    corecore