33 research outputs found

    Π“Π•ΠžΠ”Π˜ΠΠΠœΠ˜Π§Π•Π‘ΠšΠ˜Π• Π’ΠžΠ›ΠΠ« И Π“Π ΠΠ’Π˜Π’ΠΠ¦Π˜Π―

    Get PDF
    Β Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature) are related. Β The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928].Β The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. BasedΒ on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time β€˜vortex’ properties.Β Β Β ΠŸΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ ΠΎΠ±Π·ΠΎΡ€ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… явлСний, связанных с двиТСниями Π—Π΅ΠΌΠ»ΠΈ Π² Π‘ΠΎΠ»Π½Π΅Ρ‡Π½ΠΎΠΉ систСмС ΠΈ Π“Π°Π»Π°ΠΊΡ‚ΠΈΠΊΠ΅. Π­Ρ‚ΠΈ двиТСния ΠΈ ΠΈΡ… Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΈ ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‚ΡΡ Π² гСологичСских процСссах, происходящих Π² Π—Π΅ΠΌΠ»Π΅, ΠΈ ΠΊΠΎΡ€Ρ€Π΅Π»ΠΈΡ€ΡƒΡŽΡ‚ с Π΅Π΅ гСофизичСскими полями. ЀормулируСтся Π²Ρ‹Π²ΠΎΠ΄ ΠΎ сущСствовании взаимосвязи ΠΌΠ΅ΠΆΠ΄Ρƒ гСодинамичСскими процСссами ΠΈ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ (космичСской ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ Π² Ρ‚ΠΎΠΌ числС) явлСниями. БостояниС гСосрСды, ΡΠ²Π»ΡΡŽΡ‰Π΅ΠΉΡΡ Π±Π»ΠΎΠΊΠΎΠ²ΠΎΠΉ ΠΏΠΎ своСму ΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΡŽ, опрСдСляСтся напряТСниями с ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠΌ силы ΠΈ Π½ΠΎΠ²Ρ‹ΠΌ Ρ‚ΠΈΠΏΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ – ΠΌΠ΅Π΄Π»Π΅Π½Π½Ρ‹ΠΌΠΈ Ρ€ΠΎΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ Π²ΠΎΠ»Π½Π°ΠΌΠΈ [Vikulin, 2008a, 2008b, 2010]. Показано, Ρ‡Ρ‚ΠΎ для гСо­срСды Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ Ρ€Π΅ΠΈΠ΄Π½Ρ‹Π΅ [Carey, 1953] свойства – ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Ρ‚Π΅Ρ‡ΡŒ Π² Ρ‚Π²Π΅Ρ€Π΄ΠΎΠΌ состоянии [Leonov, 2008]. Π’Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ гСосрСды позволяСт Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Ρ€Π°Π·Π²ΠΈΠ²Π°Π΅ΠΌΠΎΠΉ Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ Ρ€ΠΎΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ с симмСтричным Ρ‚Π΅Π½Π·ΠΎΡ€ΠΎΠΌ напряТСний [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013] ΠΎΠ±ΡŠΡΡΠ½ΠΈΡ‚ΡŒ Π΅Π΅ энСргонасыщСнноС состояниС ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ двиТСния Π² Π²ΠΈΠ΄Π΅ Π²ΠΈΡ…Ρ€Π΅Π²Ρ‹Ρ… гСологичСских структур [Lee, 1928].Β ΠžΠ±ΡΡƒΠΆΠ΄Π°Π΅Ρ‚ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ рСгистрации Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½, Π² основС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π·Π°Π»ΠΎΠΆΠ΅Π½Π° идСя ΠΈΡ… взаимодСйствия с Π±Π»ΠΎΠΊΠ°ΠΌΠΈ Π·Π΅ΠΌΠ½ΠΎΠΉ ΠΊΠΎΡ€Ρ‹ [Braginsky et al., 1985]. ЀормулируСтся Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Ρ‚Π°ΠΊΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ с использо­ваниСм Π² качСствС Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΌΠ΅Π΄Π»Π΅Π½Π½Ρ‹Ρ… Ρ€ΠΎΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ оказываСтся Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ Π·Π°Ρ€Π΅Π³ΠΈΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Π²ΠΎΠ»Π½Ρ‹. ОписаниС Π³Π΅ΠΎΠ³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΊΠ°ΠΊ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ энСргии Ρ‚Π΅Π» [Kondratiev, 2003], Ρ‚Π°ΠΊ ΠΈ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ физичСской акустики [Gurbatov et al., 2008]. ΠžΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ гСо­физичСских ΠΈ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ΠΎΠ²Ρ‹Ρ… Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π°Π²Ρ‚ΠΎΡ€Π°ΠΌ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΡ‚ΡŒ Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρƒ ΠΎ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π΅ спина – собствСнного ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° ΠΊΠ°ΠΊ проявлСния Β«Π²ΠΈΡ…Ρ€Π΅Π²Ρ‹Ρ…Β» свойств пространства–врСмСни.Β 

    Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ примСнСния ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΉ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° БупСрстим Π² ΠΌΠ°Π»Ρ‹Ρ… Π΄ΠΎΠ·Π°Ρ… Π½Π° этапС Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ микрорастСний Тимолости (Lonicera L.) подсСкции синСй (Caeruleae Rehd.) ΠΊ Π½Π΅ΡΡ‚Π΅Ρ€ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ условиям с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ послСдСйствия Π½Π° этапС доращивания

    Get PDF
    Relevance. In recent years, interest in the edible honeysuckle culture has increased in Russia, the wide distribution of which is hampered by the lack of quality planting material. The technology of clonal micropropagation allows for a short time to obtain a large amount of honeysuckle planting material, more than a thousand regenerated plants per year from one meristematic apex introduced into an in vitro culture. It is hundreds of times more than in traditional methods of vegetative propagation. Adaptation to non-sterile conditions is the final and most crucial stage of clonal micropropagation, the loss of which can be from 50 to 90%. It should be noted that there is practically no research on how the further development of adapted honeysuckle plants takes place during subsequent growing.Methods. Researching of growth regulators of the new generation Superstim 1 and Superstim 2 effect in low and ultra-low doses on the survival rates and development of honeysuckle plants at the stages of adaptation subsequent growing.Results. Superstim 1 is more effective at physiological concentrations – 1 x 10-7 and in the field of ultra-low doses – 1 x 10-14, 1 x 10-15%. At the stage of subsequent growing, a positive after-effect of physiological concentrations – 1x10-3 and 1x10-7 was observed, and an ultra-low dose – 1x10-17%. The growth regulator Superstim 2 at the stages of adaptation and subsequent growing is effectively used only in one concentration – 1x10-16%. The additional foliar treatments at the stage of subsequent growing are not necessary.Β ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. Π’ послСдниС Π³ΠΎΠ΄Ρ‹ Π² России увСличиваСтся интСрСс ΠΊ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅ Тимолости съСдобной, ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ распространСниС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ сдСрТиваСтся ΠΈΠ·-Π·Π° Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π° качСствСнного посадочного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. ВСхнология клонального микроразмноТСния позволяСт Π·Π° ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΉ срок ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ большоС количСство посадочного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Тимолости, Π±ΠΎΠ»Π΅Π΅ тысячи растСний-Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Π½Ρ‚ΠΎΠ² Π² Π³ΠΎΠ΄ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π²Π²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρƒ in vitro мСристСматичСского апСкса, Ρ‡Ρ‚ΠΎ Π² сотни Ρ€Π°Π· большС, Ρ‡Π΅ΠΌ ΠΏΡ€ΠΈ использовании Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π²Π΅Π³Π΅Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ размноТСния. Адаптация ΠΊ Π½Π΅ΡΡ‚Π΅Ρ€ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ условиям являСтся Π·Π°ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ отвСтствСнным этапом клонального микроразмноТСния, ΠΏΠΎΡ‚Π΅Ρ€ΠΈ Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΌΠΎΠ³ΡƒΡ‚ ΡΠΎΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ ΠΎΡ‚ 50 Π΄ΠΎ 90% ΠΌΠ΅Ρ€ΠΈΠΊΠ»ΠΎΠ½ΠΎΠ². Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ практичСски Π½Π΅Ρ‚ исслСдований ΠΎ Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ происходит дальнСйшСС Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Π°Π΄Π°ΠΏΡ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… растСний Тимолости ΠΏΡ€ΠΈ Π΄ΠΎΡ€Π°Ρ‰ΠΈΠ²Π°Π½ΠΈΠΈ.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ°. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ влияния ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Π½ΠΎΠ²ΠΎΠ³ΠΎ поколСния БупСрстим 1 ΠΈ БупСрстим 2 Π² ΠΌΠ°Π»Ρ‹Ρ… ΠΈ свСрхмалых Π΄ΠΎΠ·Π°Ρ… Π½Π° ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ приТиваСмости ΠΈ развития растСний Тимолости Π½Π° этапах Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ ΠΈ доращивания.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ВыявлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ БупСрстим 1 Π±ΠΎΠ»Π΅Π΅ эффСктивСн Π² физиологичСской ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ – 1x10-7% ΠΈ Π² области свСрхмалых Π΄ΠΎΠ· – 1x10-14, 1x10-15%. На этапС доращивания выявлСно ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ послСдСйствиС физиологичСских ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ – 1x10-3, 1x10-7%, ΠΈ свСрхмалой Π΄ΠΎΠ·Ρ‹ – 1x10-17%. ΠŸΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ БупСрстим 2 Π½Π° этапах Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ ΠΈ доращивания эффСктивно ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ – 1x10-16%. Π’ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π½Π΅ΠΊΠΎΡ€Π½Π΅Π²Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ°Ρ… Π½Π° этапС доращивания Π½Π΅Ρ‚ нСобходимости.

    GEODYNAMIC WAVES AND GRAVITY

    No full text
    Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature) are related. Β The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928].Β The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. BasedΒ on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time β€˜vortex’ properties

    Key indicators of innovation activity of Russia (From 2011 to 2017)

    No full text
    Β© 2019, Allied Business Academies. All rights reserved. Innovation as a priority for development Russia's economy became relevant relatively recently. Management of innovation processes federal and regional level requires knowledge of their patterns, problems and the specifics of innovation in Russia, as well as the problems and specifics of the innovation activities of enterprises in the context of economic activities. Official federal statistics contain extremely limited number of indicators characterizing innovative processes in business. The innovation sphere is currently the subject of a study of various branches of scientific knowledge and is actualized in numerous scientific publications. However, they do not have common conceptual foundations, and for the most part they have only economic content. In the literature there is no single definition of the concept of "innovation", we tried to give a single comprehensive definition of the concept of "innovation", consider different points of view, identified two main approaches to the definition of the concept of innovation. In the article we tried to analyze the basic indicators of the innovative development of the Russian Federation over the past 7 years

    Key indicators of innovation activity of Russia (From 2011 to 2017)

    No full text
    Β© 2019, Allied Business Academies. All rights reserved. Innovation as a priority for development Russia's economy became relevant relatively recently. Management of innovation processes federal and regional level requires knowledge of their patterns, problems and the specifics of innovation in Russia, as well as the problems and specifics of the innovation activities of enterprises in the context of economic activities. Official federal statistics contain extremely limited number of indicators characterizing innovative processes in business. The innovation sphere is currently the subject of a study of various branches of scientific knowledge and is actualized in numerous scientific publications. However, they do not have common conceptual foundations, and for the most part they have only economic content. In the literature there is no single definition of the concept of "innovation", we tried to give a single comprehensive definition of the concept of "innovation", consider different points of view, identified two main approaches to the definition of the concept of innovation. In the article we tried to analyze the basic indicators of the innovative development of the Russian Federation over the past 7 years

    Comparative cytotoxicity of kaolinite, halloysite, multiwalled carbon nanotubes and graphene oxide

    No full text
    This study aimed at comparative examining of the interactions between conventionally used clay and carbon nanomaterials and human lung adenocarcinoma cells (A549 cells). The following platy and tubular nanomaterials were tested: carbon nanoparticles, i.e. multi-walled carbon nanotubes (MWCNTs) and graphene oxide nanosheets (GO) as well as nanoclays, i.e. halloysite nanotubes (HNTs) and kaolinite nanosheets (Kaol). Nanoparticle physicochemical properties and their internalization into cells were examined using dynamic light scattering as well as atomic force, 3D laser scanning confocal and darkfield hyperspectral microscopies. Biological aspects of the nanomaterial-cell interaction included assessment of cellular toxicity, DNA damage, metabolic activity, and physical parameters of the cells. Regardless of a shape, carbon nanomaterials demonstrated cell surface adsorption, but negligible penetration into cells compared to nanoclays. However, carbon nanomaterials were found to be the most toxic for cells as probed by the MTS assay. They also turned out to be the most genotoxic for cells compared to nanoclays as revealed by the DNA-Comet assay. GO significantly increased the fraction of apoptotic cells and was the most cytotoxic and genotoxic nanomaterial. Comparison of flow cytometry and MTS data indicated that a cytotoxic effect of MWCNTs was not associated with increased cell death, but was rather due to a decrease in cell metabolic activity and/or proliferation. Finally, no significant effect of the shape of the tested nanomaterials on their internalization and cytotoxicity was revealed

    Pharmaceuticals removal by adsorption with montmorillonite nanoclay

    No full text
    The problem of purifying domestic and hospital wastewater from pharmaceutical compounds is becoming more and more urgent every year, because of the continuous accumulation of chemical pollutants in the environment and the limited availability of freshwater resources. Clay adsorbents have been repeatedly proposed as adsorbents for treatment purposes, but natural clays are hydrophilic and can be inefficient for catching hydrophobic pharmaceuticals. In this paper, a comparison of adsorption properties of pristine montmorillonite (MMT) and montmorillonite modified with stearyl trimethyl ammonium (hydrophobic MMT-STA) towards carbamazepine, ibuprofen, and paracetamol pharmaceuticals was performed. The efficiency of adsorption was investigated under varying solution pH, temperature, contact time, initial concentration of pharmaceuticals, and adsorbate/adsorbent mass ratio. MMT-STA was better than pristine MMT at removing all the pharmaceuticals studied. The adsorption capacity of hydrophobic montmorillonite to pharmaceuticals decreased in the following order: carbamazepine (97%) >ibuprofen (95%) > paracetamol (63–67%). Adsorption isotherms were best described by Freundlich model. Within the pharmaceutical concentration range of 10–50 Β΅g/mL, the most optimal mass ratio of adsorbates to adsorbents was 1:300, pH 6, and a temperature of 25β—¦ C. Thus, MMT-STA could be used as an efficient adsorbent for decontaΓ—ating water of carbamazepine, ibuprofen, and paracetamol
    corecore