6 research outputs found

    [Synthesis, Structure and Some Biochemical-properties of 3'-branched Thymidines and Their 5'-phosphate Derivatives]

    No full text
    A full scheme of synthesizing 3'-C-methyl-2'-deoxynucleosides and 3'-C-methylidene-28,3'-dideoxythymidine has been developed by using 2-deoxyribose. The stereoselectivity of the Grignard reagent's attachment to 2-deoxyfuranose 3-ulosides determined by the substitute configuration at Cl and the condensation stereoselectivity of 3-C-methyl-2-deoxyfuranosides with silylated thymine dependent on the configuration of the hydroxyl or-OBz group at C3 have been studied. The structure of the resultant compounds has been evidenced by H-1 and C-13 NMR, UV spectroscopies and C, H, and N analysis. The C2'-endo-C1-exo-conformation, the anti-conformation of the thymine base in relation to the glycoside bond and the gosh+-conformation in relation to the C4'-C5' bond are characteristic of the structure of 3'-C-methyl-2'-deoxythymidine in the crystal. 3'-C-Metyl-2'-deoxythymidine-5'-triphosphate exhibited the properties of the competitive inhibitor against 2'-deoxythimidine 5'-triphosphate in the synthesis of DNA catalyzed by various DNA-polymerases and reverse transcriptases. But none of these enzymes incorporated this compound into the growing DNA chain. At the same time 3'-C-methylidene-2',3'-dideoxythymidine-5'-triphosphate was incorporated into the 3'-end of the chain of DNA catalyzed by HIV reverse transcriptase, though the latter having a low efficacy. 3'-C-Methyl-2'-deoxythymidine failed to suppress HIV-1 production in the cultured MT-4 cells, its 5'-phosphite exhibiting a low activity under the same conditions

    Dynamic remodelling of the human host cell proteome and phosphoproteome upon enterovirus infection

    No full text
    The group of enteroviruses contains many important pathogens for humans, including poliovirus, coxsackievirus, rhinovirus, as well as newly emerging global health threats such as EV-A71 and EV-D68. Here, we describe an unbiased, system-wide and time-resolved analysis of the proteome and phosphoproteome of human cells infected with coxsackievirus B3. Of the ~3,200 proteins quantified throughout the time course, a large amount (~25%) shows a significant change, with the majority being downregulated. We find ~85% of the detected phosphosites to be significantly regulated, implying that most changes occur at the post-translational level. Kinase-motif analysis reveals temporal activation patterns of certain protein kinases, with several CDKs/MAPKs immediately active upon the infection, and basophilic kinases, ATM, and ATR engaging later. Through bioinformatics analysis and dedicated experiments, we identify mTORC1 signalling as a major regulation network during enterovirus infection. We demonstrate that inhibition of mTORC1 activates TFEB, which increases expression of lysosomal and autophagosomal genes, and that TFEB activation facilitates the release of virions in extracellular vesicles via secretory autophagy. Our study provides a rich framework for a system-level understanding of enterovirus-induced perturbations at the protein and signalling pathway levels, forming a base for the development of pharmacological inhibitors to treat enterovirus infections

    Risk Categorization Using New American College of Cardiology/American Heart Association Guidelines for Cholesterol Management and Its Relation to Alirocumab Treatment Following Acute Coronary Syndromes

    No full text
    10.1161/CIRCULATIONAHA.119.042551CIRCULATION140191578-158

    Effect of Alirocumab on Mortality After Acute Coronary Syndromes An Analysis of the ODYSSEY OUTCOMES Randomized Clinical Trial

    No full text
    10.1161/CIRCULATIONAHA.118.038840CIRCULATION1402103-11

    Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial

    No full text
    Background After acute coronary syndrome, diabetes conveys an excess risk of ischaemic cardiovascular events. A reduction in mean LDL cholesterol to 1.4-1.8 mmol/L with ezetimibe or statins reduces cardiovascular events in patients with an acute coronary syndrome and diabetes. However, the efficacy and safety of further reduction in LDL cholesterol with an inhibitor of proprotein convertase subtilisin/kexin type 9 (PCSK9) after acute coronary syndrome is unknown. We aimed to explore this issue in a prespecified analysis of the ODYSSEY OUTCOMES trial of the PCSK9 inhibitor alirocumab, assessing its effects on cardiovascular outcomes by baseline glycaemic status, while also assessing its effects on glycaemic measures including risk of new-onset diabetes

    Apolipoprotein B, Residual Cardiovascular Risk After Acute Coronary Syndrome, and Effects of Alirocumab.

    No full text
    Background: Apolipoprotein B (apoB) provides an integrated measure of atherogenic risk. Whether apoB levels and apoB lowering hold incremental predictive information on residual risk after acute coronary syndrome beyond that provided by low-density lipoprotein cholesterol is uncertain. Methods: The ODYSSEY OUTCOMES trial (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) compared the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome and elevated atherogenic lipoproteins despite optimized statin therapy. Primary outcome was major adverse cardiovascular events (MACE; coronary heart disease death, nonfatal myocardial infarction, fatal/nonfatal ischemic stroke, hospitalization for unstable angina). Associations between baseline apoB or apoB at 4 months and MACE were assessed in adjusted Cox proportional hazards and propensity score–matched models. Results: Median follow-up was 2.8 years. In proportional hazards analysis in the placebo group, MACE incidence increased across increasing baseline apoB strata (3.2 [95% CI, 2.9–3.6], 4.0 [95% CI, 3.6–4.5], and 5.5 [95% CI, 5.0–6.1] events per 100 patient-years in strata 35–<50, and ≀35 mg/dL, respectively). Compared with propensity score–matched patients from the placebo group, treatment hazard ratios for alirocumab also decreased monotonically across achieved apoB strata. Achieved apoB was predictive of MACE after adjustment for achieved low-density lipoprotein cholesterol or non–high-density lipoprotein cholesterol but not vice versa. Conclusions: In patients with recent acute coronary syndrome and elevated atherogenic lipoproteins, MACE increased across baseline apoB strata. Alirocumab reduced MACE across all strata of baseline apoB, with larger absolute reductions in patients with higher baseline levels. Lower achieved apoB was associated with lower risk of MACE, even after accounting for achieved low-density lipoprotein cholesterol or non–high-density lipoprotein cholesterol, indicating that apoB provides incremental information. Achievement of apoB levels as low as ≀35 mg/dL may reduce lipoprotein-attributable residual risk after acute coronary syndrome. Registration: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT01663402.gov; Unique identifier: NCT01663402.URL: https://www
    corecore