32 research outputs found

    Pseudomonas aeruginosa and Staphylococcus aureus virulence factors as biomarkers of infection

    Get PDF
    The gold standard for the diagnosis of bacterial infections in clinical samples is based on culture tests that are time-consuming and labor-intense. For these reasons, an extraordinary effort has been made to identify biomarkers as the tools for sensitive, rapid and accurate identification of pathogenic microorganisms. Moreover, biomarkers have been tested to distinguish colonization from infection, monitor disease progression, determine the clinical status of patients or predict clinical outcomes. This mini-review describes Pseudomonas aeruginosa and Staphylococcus aureus biomarkers, which contribute to pathogenesis and have been used in culture-independent bacterial identification directly from patient samples

    Staphylococcal cassette chromosome mec containing a novel mec gene complex, B4

    Get PDF
    OBJECTIVES: To describe a new subclass of mec class B complex identified in Staphylococcus epidermidis. METHODS: Four S. epidermidis isolates obtained from bloodstream infections in patients at University Medical Center Groningen (UMCG) were analysed by phenotypic antibiotic susceptibility testing and WGS. RESULTS: Sequence analysis revealed a new staphylococcal cassette chromosome mec (SCCmec) structure in isolate UMCG335. In this structure, plasmid pUB110 was found to be integrated into SCCmec IVc, creating a new SCCmec subtype, IVUMCG335. SCCmec IVc and a copy of plasmid pUB110 were found in other isolates, UMCG364 and UMCG341, respectively, indicating a probability that SCCmec IVUMCG335 could have evolved at the UMCG. SCCmec of UMCG337 contained a new genetic organization of the mec complex (IS431-ΔmecR1-mecA-IS431-pUB110-IS431-ψIS1272) that we have named B4. This new subclass of mec class B complex originated by IS431-mediated inversion of the DNA segment encompassing the plasmid and most of the genes of the mec complex with the exception of IS1272. As the SCCmec organization in UMCG337 differed by the inversion of an ∼10 kb sequence compared with SCCmec IVUMCG335, we have named it SCCmec subtype IVUMCG337. Isolates UMCG335 and UMCG337 carrying SCCmec IVUMCG335 and IVUMCG337, respectively, were associated with a restriction-modification system and a CRISPR-Cas system, creating a composite island of almost 70 kb. CONCLUSIONS: Our findings highlight the importance of IS431 in the evolution of the SCCmec region. The increasing genetic diversity identified in the SCCmec elements imposes a great challenge for SCCmec typing methods and highlights possible difficulties with the SCCmec nomenclature

    PVL overexpression due to genomic rearrangements and mutations in the S. aureus reference strain ATCC25923

    Get PDF
    OBJECTIVE: ATCC25923 is a Staphylococcus aureus strain that is positive for the Panton Valentin leukocidin. It has been used for decades as reference strain. We observed that two separately maintained clones of ATCC25923 ("G477 and G478") differed grossly in the expression of this toxin. For that reason, both clones were sequenced using an Illumina MiSeq instrument. After assembling, the final sequences were analyzed and mapped to a previously published ATCC25923 sequence (GenBank CP009361) using bl2seq from the NCBI Blast2 package.RESULTS: The genomes of G477 and G478 size 2778,859 and 2792,213 nucleotides, respectively. Both genomes include a circular plasmid of 27,490 nucleotides. The sequence of the G477 chromosome maps nearly exactly to CP009361. G478 has a slightly larger size because of the presence of an additional transposable element tnp13k. The second copy of that tnp13k element is located in an intergenic region between the genes mazF and rsbU. The sequences of the ATCC25923 clones G477 and G478 differ mainly in the insertion of a second tnp13k element between the genes mazF and rsbU. That insertion may lead to a different transcription of that genome region resulting in upregulation of the expression of the Panton-Valentine leukocidin in the ATCC25923 clone G478.</p

    Joint genomic and proteomic analysis identifies meta-trait characteristics of virulent and non-virulent Staphylococcus aureus strains

    Get PDF
    Staphylococcus aureus is an opportunistic pathogen of humans and warm-blooded animals and presents a growing threat in terms of multi-drug resistance. Despite numerous studies, the basis of staphylococcal virulence and switching between commensal and pathogenic phenotypes is not fully understood. Using genomics, we show here that S. aureus strains exhibiting virulent (VIR) and non-virulent (NVIR) phenotypes in a chicken embryo infection model genetically fall into two separate groups, with the VIR group being much more cohesive than the NVIR group. Significantly, the genes encoding known staphylococcal virulence factors, such as clumping factors, are either found in different allelic variants in the genomes of NVIR strains (compared to VIR strains) or are inactive pseudogenes. Moreover, the pyruvate carboxylase and gamma-aminobutyrate permease genes, which were previously linked with virulence, are pseudogenized in NVIR strain ch22. Further, we use comprehensive proteomics tools to characterize strains that show opposing phenotypes in a chicken embryo virulence model. VIR strain CH21 had an elevated level of diapolycopene oxygenase involved in staphyloxanthin production (protection against free radicals) and expressed a higher level of immunoglobulin-binding protein Sbi on its surface compared to NVIR strain ch22. Furthermore, joint genomic and proteomic approaches linked the elevated production of superoxide dismutase and DNA-binding protein by NVIR strain ch22 with gene duplications

    Case Report:Necrotizing fasciitis caused by Staphylococcus aureus positive for a new sequence variant of exfoliative toxin E

    Get PDF
    Objectives: Necrotizing fasciitis (NF) caused by S. aureus is a rare, aggressive and rapidly progressing superficial fascia infection with a high mortality rate. The aim of this study was to identify virulence-related genes from a complete genome sequence of a methicillin-susceptible S. aureus (MSSA) isolate recovered from a monomicrobial case of NF.Materials and methods: The MSSA isolate UMCG579 was cultured from a pus collection from the subcutis of a patient with NF. The genome of isolate UMCG579 was sequenced using MinION (Oxford Nanopore) and MiSeq (illumina) platforms.Results: The genome of the UMCG579 isolate was composed of a 2,741,379 bp chromosome and did not harbor any plasmids. Virulence factor profiling identified multiple pore-forming toxin genes in the UMCG579 chromosome, including the Panton-Valentine leukocidin (PVL) genes, and none of the superantigen genes. The UMCG579 isolate harbored a new sequence variant of the recently described ete gene encoding exfoliative toxin (type E). A search in the GenBank database revealed that the new sequence variant (ete2) was exclusively found among isolates (n = 115) belonging to MLST CC152. While the majority of S. aureus ete-positive isolates were recovered from animal sources, S. aureus ete2-positive isolates originated from human carriers and human infections. Comparative genome analysis revealed that the ete2 gene was located on a 8777 bp genomic island.Conclusion: The combination of two heterogeneously distributed potent toxins, ETE2 and PVL, is likely to enhance the pathogenic ability of S. aureus isolates. Since anti-virulence therapies for the treatment of S. aureus infections continue to be explored, the understanding of specific pathogenetic mechanisms may have an important prophylactic and therapeutic value. Nevertheless, the exact contribution of ETE sequence variants to S. aureus virulence in NF infections must be determined.</p

    Misidentification of meticillin-resistant Staphylococcus aureus by the Cepheid Xpert MRSA NxG assay, the Netherlands, February to March 2021

    Get PDF
    We describe two false-negative results in the detection of meticillin-resistant Staphylococcus aureus (MRSA) of sequence type 398 and spa type t011 using the Cepheid Xpert MRSA NxG assay. The isolates were recovered in late February and early March 2021 from two patients in different hospitals in the northern Netherlands. Variations between the two isolate genomes indicate that this MRSA strain might have been spreading for some time and could have disseminated to other regions of the Netherlands and other European countries

    Daptomycin Resistant Staphylococcus aureus Clinical Strain With Novel Non-synonymous Mutations in the mprF and vraS Genes:A New Insight Into Daptomycin Resistance

    Get PDF
    Objectives: Daptomycin (DAP) resistance in Staphylococcus aureus is uncommon but there are increasing reports of the emergence of resistance during DAP therapy. Most clinical DAP-resistant S. aureus isolates investigated carried mutations in the mprF gene. The aim of this study was to identify mutations between a clinical pair of methicillin-susceptible S. aureus (MSSA) isolates (DAP-susceptible and DAP-resistant). Additionally, the activity of genes previously associated with DAP resistance was assessed. Materials and Methods: Two MSSA isolates from patient with left-sided endocarditis were analyzed by whole genome sequencing (WGS) and reverse transcription-quantitative real-time PCR (RT-qPCR). The first isolate, DAP-susceptible, was obtained before initiation of treatment and the second isolate, DAP-resistant, was recovered after 4 weeks of DAP therapy. Results: Comparison of complete genomes of DAP-susceptible and its DAP-resistant variant identified two non-synonymous and one synonymous mutations. The non-synonymous mutations consisted of a S829L substitution in mprF and a T331I substitution in vraS. The RT-qPCR experiments revealed an increased expression of vraS, dltA, mprF, and sceD genes in DAP-resistant variant. Strikingly, the expression of dltA and mprF genes was significantly downregulated by DAP. Conclusion: The mprF and vraS genes were previously associated with DAP resistance, however, none of the mutations described in this study had been previously identified and linked to DAP resistance. Moreover, we provide a new insight into the DAP action on S. aureus, in which the expression of key genes in DAP resistance is decreased by the antibiotic

    Development and validation of a reference data set for assigning Staphylococcus species based on next-generation sequencing of the 16S-23S rRNA region

    Get PDF
    Many members of the Staphylococcus genus are clinically relevant opportunistic pathogens that warrant accurate and rapid identification for targeted therapy. The aim of this study was to develop a careful assignment scheme for staphylococcal species based on next-generation sequencing (NGS) of the 16S-23S rRNA region. All reference staphylococcal strains were identified at the species level using Sanger sequencing of the 16S rRNA, sodA, tuf, and rpoB genes and NGS of the 16S-23S rRNA region. To broaden the database, an additional 100 staphylococcal strains, including 29 species, were identified by routine diagnostic methods, 16S rRNA Sanger sequencing and NGS of the 16S-23S rRNA region. The results enabled development of reference sequences encompassing the 16S-23S rRNA region for 50 species (including one newly proposed species) and 6 subspecies of the Staphylococcus genus. This study showed sodA and rpoB targets were the most discriminative but NGS of the 16S-23S rRNA region was more discriminative than tuf gene sequencing and much more discriminative than 16S rRNA gene sequencing. Almost all Staphylococcus species could be distinguished when the max score was 99.0% or higher and the sequence similarity between the best and second best species was equal to or >0.2% (min. 9 nucleotides). This study allowed development of reference sequences for 21 staphylococcal species and enrichment for 29 species for which sequences were publicly available. We confirmed the usefulness of NGS of the 16S-23S rRNA region by identifying the whole species content in 45 clinical samples and comparing the results to those obtained using routine diagnostic methods. Based on the developed reference database, all staphylococcal species can be reliably detected based on the 16S-23S rRNA sequences in samples composed of both single species and more complex polymicrobial communities. This study will be useful for introduction of a novel diagnostic tool, which undoubtedly is an improvement for reliable species identification in polymicrobial samples. The introduction of this new method is hindered by a lack of reference sequences for the 16S-23S rRNA region for many bacterial species. The results will allow identification of all Staphylococcus species, which are clinically relevant pathogens

    Development of a reference data set for assigning Streptococcus and Enterococcus species based on next generation sequencing of the 16S-23S rRNA region

    Get PDF
    Background: Many members of Streptococcus and Enterococcus genera are clinically relevant opportunistic pathogens warranting accurate and rapid identification for targeted therapy. Currently, the developed method based on next generation sequencing (NGS) of the 16S-23S rRNA region proved to be a rapid, reliable and precise approach for species identification directly from polymicrobial and challenging clinical samples. The introduction of this new method to routine diagnostics is hindered by a lack of the reference sequences for the 16S-23S rRNA region for many bacterial species. The aim of this study was to develop a careful assignment for streptococcal and enterococcal species based on NGS of the 16S-23S rRNA region. Methods: Thirty two strains recovered from clinical samples and 19 reference strains representing 42 streptococcal species and nine enterococcal species were subjected to bacterial identification by four Sanger-based sequencing methods targeting the genes encoding (i) 16S rRNA, (ii) sodA, (iii) tuf and (iv) rpoB; and NGS of the 16S-23S rRNA region. Results: This study allowed obtainment and deposition of reference sequences of the 16S-23S rRNA region for 15 streptococcal and 3 enterococcal species followed by enrichment for 27 and 6 species, respectively, for which reference sequences were available in the databases. For Streptococcus, NGS of the 16S-23S rRNA region was as discriminative as Sanger sequencing of the tuf and rpoB genes allowing for an unambiguous identification of 93% of analyzed species. For Enterococcus, sodA, tuf and rpoB genes sequencing allowed for identification of all species, while the NGS-based method did not allow for identification of only one enterococcal species. For both genera, the sequence analysis of the 16S rRNA gene was endowed with a low identification potential and was inferior to that of other tested identification methods. Moreover, in case of phylogenetically related species the sequence analysis of only the intergenic spacer region was not sufficient enough to precisely identify Streptococcus strains at the species level. Conclusions: Based on the developed reference dataset, clinically relevant streptococcal and enterococcal species can now be reliably identified by 16S-23S rRNA sequences in samples. This study will be useful for introduction of a novel diagnostic tool, NGS of the 16S-23S rRNA region, which undoubtedly is an improvement for reliable culture-independent species identification directly from polymicrobially constituted clinical samples

    Insight Into the Anti-staphylococcal Activity of JBC 1847 at Sub-Inhibitory Concentration

    Get PDF
    Multidrug-resistant pathogens constitute a serious global issue and, therefore, novel antimicrobials with new modes of action are urgently needed. Here, we investigated the effect of a phenothiazine derivative (JBC 1847) with high antimicrobial activity on Staphylococcus aureus, using a wide range of in vitro assays, flow cytometry, and RNA transcriptomics. The flow cytometry results showed that JBC 1847 rapidly caused depolarization of the cell membrane, while the macromolecule synthesis inhibition assay showed that the synthesis rates of DNA, RNA, cell wall, and proteins, respectively, were strongly decreased. Transcriptome analysis of S. aureus exposed to sub-inhibitory concentrations of JBC 1847 identified a total of 78 downregulated genes, whereas not a single gene was found to be significantly upregulated. Most importantly, there was downregulation of genes involved in adenosintrifosfat (ATP)-dependent pathways, including histidine biosynthesis, which is likely to correlate with the observed lower level of intracellular ATP in JBC 1847–treated cells. Furthermore, we showed that JBC 1847 is bactericidal against both exponentially growing cells and cells in a stationary growth phase. In conclusion, our results showed that the antimicrobial properties of JBC 1847 were primarily caused by depolarization of the cell membrane resulting in dissipation of the proton motive force (PMF), whereby many essential bacterial processes are affected. JBC 1847 resulted in lowered intracellular levels of ATP followed by decreased macromolecule synthesis rate and downregulation of genes essential for the amino acid metabolism in S. aureus. Bacterial compensatory mechanisms for this proposed multi-target activity of JBC 1847 seem to be limited based on the observed very low frequency of resistance toward the compound
    corecore