127 research outputs found

    Interpretable 3D Multi-Modal Residual Convolutional Neural Network for Mild Traumatic Brain Injury Diagnosis

    Full text link
    Mild Traumatic Brain Injury (mTBI) is a significant public health challenge due to its high prevalence and potential for long-term health effects. Despite Computed Tomography (CT) being the standard diagnostic tool for mTBI, it often yields normal results in mTBI patients despite symptomatic evidence. This fact underscores the complexity of accurate diagnosis. In this study, we introduce an interpretable 3D Multi-Modal Residual Convolutional Neural Network (MRCNN) for mTBI diagnostic model enhanced with Occlusion Sensitivity Maps (OSM). Our MRCNN model exhibits promising performance in mTBI diagnosis, demonstrating an average accuracy of 82.4%, sensitivity of 82.6%, and specificity of 81.6%, as validated by a five-fold cross-validation process. Notably, in comparison to the CT-based Residual Convolutional Neural Network (RCNN) model, the MRCNN shows an improvement of 4.4% in specificity and 9.0% in accuracy. We show that the OSM offers superior data-driven insights into CT images compared to the Grad-CAM approach. These results highlight the efficacy of the proposed multi-modal model in enhancing the diagnostic precision of mTBI.Comment: Accepted by the Australasian Joint Conference on Artificial Intelligence 2023 (AJCAI 2023). 12 pages and 5 Figure

    MRI signal phase oscillates with neuronal activity in cerebral cortex: implications for neuronal current imaging

    Get PDF
    Neuronal activity produces transient ionic currents that may be detectable using magnetic resonance imaging (MRI). We examined the feasibility of MRI-based detection of neuronal currents using computer simulations based on the laminar cortex model (LCM). Instead of simulating the activity of single neurons, we decomposed neuronal activity to action potentials (AP) and postsynaptic potentials (PSP). The geometries of dendrites and axons were generated dynamically to account for diverse neuronal morphologies. Magnetic fields associated with APs and PSPs were calculated during spontaneous and stimulated cortical activity, from which the neuronal current induced MRI signal was determined. We found that the MRI signal magnitude change (< 0.1 ppm) is below currently detectable levels but that the signal phase change is likely to be detectable. Furthermore, neuronal MRI signals are sensitive to temporal and spatial variations in neuronal activity but independent of the intensity of neuronal activation. Synchronised neuronal activity produces large phase changes (in the order of 0.1 mrad). However, signal phase oscillates with neuronal activity. Consequently, MRI scans need to be synchronised with neuronal oscillations to maximise the likelihood of detecting signal phase changes due to neuronal currents. These findings inform the design of MRI experiments to detect neuronal currents

    Fractional order magnetic resonance fingerprinting in the human cerebral cortex

    Full text link
    Mathematical models are becoming increasingly important in magnetic resonance imaging (MRI), as they provide a mechanistic approach for making a link between tissue microstructure and signals acquired using the medical imaging instrument. The Bloch equations, which describes spin and relaxation in a magnetic field, is a set of integer order differential equations with a solution exhibiting mono-exponential behaviour in time. Parameters of the model may be estimated using a non-linear solver, or by creating a dictionary of model parameters from which MRI signals are simulated and then matched with experiment. We have previously shown the potential efficacy of a magnetic resonance fingerprinting (MRF) approach, i.e. dictionary matching based on the classical Bloch equations, for parcellating the human cerebral cortex. However, this classical model is unable to describe in full the mm-scale MRI signal generated based on an heterogenous and complex tissue micro-environment. The time-fractional order Bloch equations has been shown to provide, as a function of time, a good fit of brain MRI signals. We replaced the integer order Bloch equations with the previously reported time-fractional counterpart within the MRF framework and performed experiments to parcellate human gray matter, which is cortical brain tissue with different cyto-architecture at different spatial locations. Our findings suggest that the time-fractional order parameters, {\alpha} and {\beta}, potentially associate with the effect of interareal architectonic variability, hypothetically leading to more accurate cortical parcellation

    Can anomalous diffusion models in magnetic resonance imaging be used to characterise white matter tissue microstructure?

    Get PDF
    During the time window of diffusion weighted magnetic resonance imaging experiments (DW-MRI), water diffusion in tissue appears to be anomalous as a transient effect, with a mean squared displacement that is not a linear function of time. A number of statistical models have been proposed to describe water diffusion in tissue, and parameters describing anomalous as well as Gaussian diffusion have previously been related to measures of tissue microstructure such as mean axon radius. We analysed the relationship between white matter tissue characteristics and parameters of existing statistical diffusion models.A white matter tissue model (ActiveAx) was used to generate multiple b-value diffusion-weighted magnetic resonance imaging signals. The following models were evaluated to fit the diffusion signal: 1) Gaussian models - 1a) mono-exponential decay and 1b) bi-exponential decay; 2) Anomalous diffusion models - 2a) stretched exponential, 2b) continuous time random walk and 2c) space fractional Bloch-Torrey equation. We identified the best candidate model based on the relationship between the diffusion-derived parameters and mean axon radius and axial diffusivity, and applied it to the in vivo DW-MRI data acquired at 7.0 T from five healthy participants to estimate the same selected tissue characteristics. Differences between simulation parameters and fitted parameters were used to assess accuracy and in vivo findings were compared to previously reported observations.The space fractional Bloch-Torrey model was found to be the best candidate in characterising white matter on the base of the ActiveAx simulated DW-MRI data. Moreover, parameters of the space fractional Bloch-Torrey model were sensitive to mean axon radius and axial diffusivity and exhibited low noise sensitivity based on simulations. We also found spatial variations in the model parameter β to reflect changes in mean axon radius across the mid-sagittal plane of the corpus callosum.Simulations have been used to define how the parameters of the most common statistical magnetic resonance imaging diffusion models relate to axon radius and diffusivity. The space fractional Bloch-Torrey equation was identified as the best model for the characterisation of axon radius and diffusivity. This model allows changes in mean axon radius and diffusivity to be inferred from spatially resolved maps of model parameters

    Curriculum design innovation in flexible science teaching

    Get PDF
    In this paper you will be introduced to a number of guidelines, which can be used to inform good teaching practice and rigorous curriculum design. Guidelines relate to: 1. application of a common sequence of events for how learners learn; 2. accommodating different learning styles; 3. adopting a purposeful approach to teaching and learning; 4. using assessment as a central driving force in the curriculum and as an organising structure leading to coherence of teaching and learning approach; and 5. the increasing emphasis that is being placed on the development of generic graduate competencies over and above discipline content knowledge. The guidelines are particularly significant in relation to adult learning and together they form the basis of a practical approach for learning module development. Three specific learning modules are used to illustrate the application of the guidelines. They are taken from a second year subject in introductory supercomputing that uses scientific case studies

    Signal compartments in ultra-high field multi-echo gradient echo MRI reflect underlying tissue microstructure in the brain

    Get PDF
    Gradient recalled echo magnetic resonance imaging (GRE-MRI) at ultra-high field holds great promise for new contrast mechanisms and delineation of putative tissue compartments that contribute to the multi-echo GRE-MRI signal may aid structural characterization. Several studies have adopted the three water-pool compartment model to study white matter brain regions, associating individual compartments with myelin, axonal and extracellular water. However, the number and identifiability of GRE-MRI signal compartments has not been fully explored. We undertook this task for human brain imaging data. Multiple echo time GRE-MRI data were acquired in five healthy participants, specific anatomical structures were segmented in each dataset (substantia nigra, caudate, insula, putamen, thalamus, fornix, internal capsule, corpus callosum and cerebrospinal fluid), and the signal fitted with models comprising one to six signal compartments using a complex-valued plane wave formulation. Information criteria and cluster analysis methods were used to ascertain the number of distinct compartments within the signal from each structure and to determine their respective frequency shifts. We identified five principal signal compartments with different relative contributions to each structure's signal. Voxel-based maps of the volume fraction of each of these compartments were generated and demonstrated spatial correlation with brain anatomy

    ParaPET: non-invasive deep learning method for direct parametric brain PET reconstruction using histoimages.

    Get PDF
    BACKGROUND The indirect method for generating parametric images in positron emission tomography (PET) involves the acquisition and reconstruction of dynamic images and temporal modelling of tissue activity given a measured arterial input function. This approach is not robust, as noise in each dynamic image leads to a degradation in parameter estimation. Direct methods incorporate into the image reconstruction step both the kinetic and noise models, leading to improved parametric images. These methods require extensive computational time and large computing resources. Machine learning methods have demonstrated significant potential in overcoming these challenges. But they are limited by the requirement of a paired training dataset. A further challenge within the existing framework is the use of state-of-the-art arterial input function estimation via temporal arterial blood sampling, which is an invasive procedure, or an additional magnetic resonance imaging (MRI) scan for selecting a region where arterial blood signal can be measured from the PET image. We propose a novel machine learning approach for reconstructing high-quality parametric brain images from histoimages produced from time-of-flight PET data without requiring invasive arterial sampling, an MRI scan, or paired training data from standard field-of-view scanners. RESULT The proposed is tested on a simulated phantom and five oncological subjects undergoing an 18F-FDG-PET scan of the brain using Siemens Biograph Vision Quadra. Kinetic parameters set in the brain phantom correlated strongly with the estimated parameters (K1, k2 and k3, Pearson correlation coefficient of 0.91, 0.92 and 0.93) and a mean squared error of less than 0.0004. In addition, our method significantly outperforms (p < 0.05, paired t-test) the conventional nonlinear least squares method in terms of contrast-to-noise ratio. At last, the proposed method was found to be 37% faster than the conventional method. CONCLUSION We proposed a direct non-invasive DL-based reconstruction method and produced high-quality parametric maps of the brain. The use of histoimages holds promising potential for enhancing the estimation of parametric images, an area that has not been extensively explored thus far. The proposed method can be applied to subject-specific dynamic PET data alone

    A competitive scheme for storing sparse representation of X-Ray medical images

    Get PDF
    A competitive scheme for economic storage of the informational content of an X-Ray image, as it can be used for further processing, is presented. It is demonstrated that sparse representation of that type of data can be encapsulated in a small file without affecting the quality of the recovered image. The proposed representation, which is inscribed within the context of data reduction, provides a format for saving the image information in a way that could assist methodologies for analysis and classification. The competitiveness of the resulting file is compared against the compression standards JPEG and JPEG200
    • …
    corecore