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Abstract 

Gradient recalled echo magnetic resonance imaging (GRE-MRI) at ultra-high field holds great 

promise for new contrast mechanisms and delineation of putative tissue compartments that 

contribute to the multi-echo GRE-MRI signal may aid structural characterization. Several studies 

have adopted the three water-pool compartment model to study white matter brain regions, 

associating individual compartments with myelin, axonal and extracellular water. However, the 

number and identifiability of GRE-MRI signal compartments has not been fully explored. We 

undertook this task for human brain imaging data. Multiple echo time GRE-MRI data were acquired 

in five healthy participants, specific anatomical structures were segmented in each dataset (substantia 

nigra, caudate, insula, putamen, thalamus, fornix, internal capsule, corpus callosum and 

cerebrospinal fluid), and the signal fitted with models comprising one to six signal compartments 

using a complex-valued plane wave formulation. Information criteria and cluster analysis methods 

were used to ascertain the number of distinct compartments within the signal from each structure and 

to determine their respective frequency shifts. We identified five principal signal compartments with 

different relative contributions to each structure’s signal. Voxel-based maps of the volume fraction 

of each of these compartments were generated and demonstrated spatial correlation with brain 

anatomy.  

Keywords: Ultra-high field, GRE-MRI, signal compartments, frequency shift, magnetic 
susceptibility, tissue microstructure.
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Introduction 

In the brain, regional differences in the echo time dependence of the multi-echo GRE-

MRI (mGRE-MRI) signal may reflect the influence of variations in tissue microstructure 

(Cronin et al., 2017; Schweser et al., 2011a; Sood et al., 2017; Yablonskiy and Haacke, 

1994). These effects have been characterized by modelling the mGRE-MRI signals in terms 

of signal compartments (Du et al., 2007; Hwang et al., 2010; Sati et al., 2013). The 

compartments are postulated to reflect the micro-scale (< 100µm) magnetic resonance 

imaging (MRI) voxel constituents, thereby contributing to efforts to map, characterize and 

quantify brain tissue microstructure (Nam et al., 2015; Thapaliya et al., 2017; Wu et al., 

2017). 

In myelin water fraction imaging, white matter GRE-MRI signal is modelled by a 

three-pool model reflecting myelin, axonal and extracellular water pools (Du et al., 2007; 

Hwang et al., 2010; Nam et al., 2015; Sati et al., 2013; Thapaliya et al., 2017; Wu et al., 

2017). Sood et al. (Sood et al., 2017) demonstrated temporal trends in QSM in non-white 

matter brain regions (i.e. caudate, putamen, substantia nigra, thalamus, pallidum, and red 

nucleus), and attributed them to variations in cytoarchitecture such as differences in cell 

density and orientation and iron content (Abduljalil et al., 2003; Drayer et al., 1986; 

Fukunaga et al., 2010; Schenck and Zimmerman, 2004; Todorich et al., 2009). The signal 

compartments in non-white matter brain regions remain to be fully explored. We therefore 

investigated the number of signal compartments in a range of human brain regions (including 

gray matter, white matter and CSF) using a data driven approach and determined whether 

signal compartments are shared by different brain regions.  
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Methods 

Data acquisition 

The experiment protocol was approved by the University of Queensland Human 

Research Ethics Committee. Informed consent was provided by seven healthy adult 

volunteers of mean age of 33 ± 3 years. In vivo brain imaging was conducted on a 7T whole-

body MRI scanner (Siemens Healthcare, Erlangen, Germany) equipped with a 32-channel 

head coil (Nova Medical, Wilmington, Massachusetts). A 30 echo 3D gradient recalled echo 

scan with monopolar echo readout was acquired with the following acquisition settings: TE1 

= 2.04 ms and echo spacing of 1.53 ms, TR = 51 ms, flip angle = 15o, voxel size = 1 × 1 × 

1mm, matrix size = 210 × 168 × 144, bandwidth = 850Hz/voxel and phase encoding direction 

acceleration = 2. Data was acquired in 6 min 13 s.   

Signal processing and quantitative susceptibility mapping 

The magnitude image of each channel was used to form a channel mask using the 

BET tool provided as part of MIPAV 7.3.0 (http://mipav.cit.nih.gov/). The result was read 

into MATLAB 2015b (The MathWorks, Natick, Massachusetts) from which a binary mask 

was created. STI Suite V2.2 (http://people.duke.edu/_cl160/) was used to process 

susceptibility maps in a channel-by-channel manner, as described previously (Bollmann et 

al., 2015). iHARPERELLA (background phase removal) and iLSQR in STI Suite were used 

to generate 3D susceptibility maps for each echo time.  

Region-of-interest selection 

Nine brain regions were considered in this study: the caudate, putamen, fornix, corpus 

callosum, internal capsule, insula, substantia nigra, thalamus, and cerebrospinal fluid (CSF). 

The white matter regions (corpus callosum, internal capsule, and fornix) were selected to 

enable comparison with the results of previous myelin water fraction imaging studies. Five 
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sub-cortical gray matter regions, namely the caudate, putamen, insula, substantia nigra, and 

thalamus were selected as a representative sample of overall sub-cortical gray matter 

structures. Manual segmentation was performed in MIPAV (illustrated in Fig. 1). To 

minimize the influence of partial volume effects, segmentation boundaries were kept at least 

two voxels away from the boundary with adjacent regions.  

 

Fig. 1. Illustration of the brain regions investigated.  
 

Complex signal generation 

To reduce the influence of non-local magnetic fields, we converted tissue phase to 

quantitative susceptibility maps which were used to estimate frequency shift to overcome 

drawbacks of working with tissue phase directly (Wu et al., 2017) using: 

∆� � � ���2	 , 

where � denotes the magnetic susceptibility value generated using the STI Suite 

pipeline, � is the gyromagnetic ratio of hydrogen and B0 = 7T (Reichenbach et al., 1997; 
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Schweser et al., 2011; 2016). The complex signal at each echo time [Sm(t)] was generated 

using magnitude (Am) and frequency shift (∆fm), averaged across voxels within each region:  

���� � ����� 	–���∆���. 
Temporal profiles of the multi-echo magnitude and susceptibility signal for all ROI have 

been demonstrated previously (Sood et al., 2017). Note, we used the –i reference frame here 

whereas previously the i reference frame was used, resulting in a difference in sign of 

compartment frequency shifts.  

Signal compartmentalization 

In accordance with previous studies (Li et al., 2015; Nam et al., 2015; Sati et al., 

2013; Wu et al., 2017), compartments of the complex GRE-MRI signal were modelled using 

a relaxation modulated amplitude modulated plane wave formulation. 

��� �������
� �
��,�∗ 	��� ∆���

!

�"#
, 

where S(t) is the signal, N is the total number of signal compartments used to fit the 

measured signal, T*
2,i is the compartment spin-spin relaxation time, in seconds, in the 

presence of field inhomogeneities and ∆fi is the compartment frequency shift. We considered 

the cases of N = 1 to 6. Any particular brain region was found to have a maximum of three 

compartments (refer to Table 2) and, have provided values for an additional three 

compartments to visualize the convexity of information loss due to overfitting. Phase shift 

was not required as background field had been removed (Li et al., 2014). As magnetic field 

changes introduced by micro-scale (< 100µm) effects were assumed to be confined to 

millimeter-scale (100µm – 1000µm) voxels, a dipole representation for signal compartments 

was not used (Chen et al., 2013; Sood et al., 2017).  

Non-linear least squares fitting implemented in MATLAB (Mathworks, Natick, MA, 

USA) was used to estimate model parameters (Ai, T
*
2,i, and ∆fi). Initial values and 
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optimization search ranges are summarized in Table 1. Fitted parameters were stable despite 

varying initial values (see Supplementary Table 1). 

Table 1  
Initial values and search range used to estimate parameters of one to six compartment signal models. 
�$%#� denotes the magnitude of the first-echo signal. & � 1	�(	6 (number of compartments). The 
maximum number iterations was N x 40,000.  
 A (a.u.) T2

* (ms) ∆f (Hz) 

Initial value |�$%#�|
&  30 0 

Lower bound 0 0 -150 
Upper bound 2	 ×	 ,�$%1�,	 200 150 
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Fig. 2. Data processing and analysis pipeline—example given for the caudate in one participant. (a) 
ROIs were selected from combined magnitude and combined susceptibility data (mask manually 
generated via magnitude images). (b) Averaged magnitude and susceptibility values were calculated 
for each ROI; averaged susceptibility values were converted to frequency shifts at each echo time. (c) 
The complex signal was generated using as a function of magnitude, frequency shift, and echo-time, 
and fitted to a multi-compartment (one to six compartment) model. (d) The most parsimonious 
compartment models were selected via the AIC for further analysis.  
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Model selection and cluster analysis 
 

Out of the seven datasets, we used only the first five participants’ data for model 

selection and cluster analysis. The other two participant datasets were used for validation. 

Achieving model parsimony, or the ideal balance between bias and variance, requires a 

model to exhibit accuracy and simplicity in describing the measured data (Vandekerckhove et 

al., 2014). The Akaike Information Criteria (AIC) was used to control overfitting in model 

selection (Akaike, 2011; Naik et al., 2007). The AIC fine tunes model parsimony by 

reinforcing improvements in quality-of-fit and penalising an increasing number of 

parameters. Further, the AIC allows the comparison of two or more models in describing the 

measured data via a maximum likelihood estimation. When fitting a model using least 

squares regression, the likelihood function can be estimated by the residual sum of squares 

(RSS) of the least squares fit, yielding: 

�-. � / log 34556 7 + 29, 

where n is the number of independent measurements, and k represents the number of 

unknown parameters. When implementing the AIC for a small sample, or measurement (i.e. 

n/k < 40) size, an additional bias correction penalty term is required (Bedrick and Tsai, 1994; 

Burnham and Anderson, 2004); this yields a ‘corrected’ AIC (AICc) metric: 

�-.: � �-. + 299 + 1�/ − 9 − 1. 

 

The model with an AIC value lower than the two adjacent models is the most 

parsimonious choice. Note, the first lowest AIC value should be chosen to avoid overfitting. 

To determine whether signal compartments were shared between different brain regions, we 
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performed a k-means cluster analysis of compartment frequency shifts associated with the 

most parsimonious model for each region (Arthur and Vassilvitskii, 2007). These 

compartment frequency shift clusters represent commonly occurring components of the 

mGRE-MRI signal phase across the nine regions considered; as such, these clusters are 

herein referred to as ‘global frequency shifts’, each of which correspond to a ‘global signal 

compartment’. It is important to note that global frequency shifts and signal compartments 

have been derived from a subset of brain regions and additional ones may exist in brain 

regions not considered in this study. The number of clusters was determined using a 

silhouette (SI) analysis using the k-means and SI function tools in MATLAB. 

Implementation of model selection and cluster analysis steps are summarized in Fig. 2. 

Connection map 
 

Based on the first five participants’ data, an analytical connection map was created to 

visualize how frequency shifts of signal compartments of each ROI linked to frequency shifts 

associated with the global signal compartments. This allowed us to understand the extent to 

which global signal compartments contributed to individual ROIs. This analysis was 

performed by (1) arranging the global compartment frequency shifts on a frequency spectrum 

(set to a loose range so as to include all values), (2) plotting volume fraction weighted shape 

representations of within-region compartment frequency shifts on the frequency spectrum, (3) 

linking the within-region compartment frequency shifts to their respective brain regions, and 

(4) ordering the brain regions by minimizing the path length of their connections. All 

components of this analysis were carried out using standard illustration tools in Adobe 

Illustrator CC 2015 (Adobe Systems, San Jose, CA, USA).  
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Generating volume fraction maps based on compartment frequency shifts 
 

The complex valued voxel signal was modelled using a five-compartment model with 

frequency shifts fixed to the five global frequency shifts identified by the cluster analysis 

(Fig. 3). The standard error (SER) was calculated for each multi-compartment fit by (1) 

normalizing the real and imaginary residual sum of squared errors for each echo time, and (2) 

summing the normalized residual squared errors across all echo times. We performed two 

levels of validation. Firstly, we generated a volume fraction map for the first participant and 

assessed whether fixing of frequency shifts results in representative volume fractions. 

Secondly, we resolved volume fraction maps based on datasets not used in the cluster 

analysis. We have defined three levels of matchings between volume fractions obtained using 

region-based and voxel-based analyses. In the results we use the ### symbol to indicate that 

the largest volume fractions and their ordering correspond between the region-based and 

voxel-based analyses (i.e. very good match). The symbol ## identifies brain regions for 

which the largest volume fraction compartments correspond (i.e. good match). Finally, # has 

been used to highlight the brain region for which one compartment volume fraction is 

mismatched (i.e. partial match). 

 

Results 

Information criteria indicate a unique number signal compartments for individual brain 
regions 

Table 2  
AIC values for one to six compartment models. Results from the one (1C) to six (6C) compartment 
model AIC analysis for each ROI. The smallest AIC value, used for model selection, is in bold face.  

 

Number of compartments 
 1C  2C  3C  4C  5C  6C 

Caudate  110   103   95   103   121   149  
Putamen  121   104   103   109   126   157  

Fornix  98   86   93   89   108   141  
CC  99   90   79   85   103   134  
IC  114   103   77   88   96   127  

Insula  127   110   113   118   136   168  
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SN  81   80   75   81   99   127  
Thalamus  69   67   71   72   90   121  

CSF  105   98   102   113   132   166  
 
The AIC analysis suggests the presence of more than one signal compartment for all regions 

investigated (Table 2). Two signal compartments were identified for the fornix, CSF, insula 

and thalamus regions. Three signal compartments were selected for the caudate, putamen, 

corpus callosum, internal capsule and substantia nigra. Table 3 provides individual parameter 

values obtained using the AIC-selected compartment models.  

Cluster analyses reveal global inter-region signal compartments 

Via the SI analysis, five frequency shift clusters were identified across brain regions 

considered (Table 4). Fig. 3 elucidates the clustering of compartment frequency shifts, 

ascertained via k-means clustering. The five frequency shift clusters exhibited cluster 

centroids at -27.5Hz, -8.4Hz, 4.6Hz, 17.8Hz, and 29.5Hz; each centroid was labelled as a 

‘global frequency shift’. Fig. 3 displays the distribution of signal compartments across brain 

regions according to frequency shift.  

Table 3  
Estimated parameters for AIC-selected signal compartment models for each brain region. Frequency 
shifts have been highlighted using bold face, and volume fraction of each compartment is expressed 
as a percentage. Compartments are ordered from largest to smallest volume fraction occupied. A1-A3 
are compartment volume fractions, ∆f1-∆f3 are compartment frequency shifts, and SER is the standard 
error of fit.  

 A1 ∆f1 (Hz) A2 ∆f2 (Hz) A3 ∆f3 (Hz) SER (%) 

Caudate 56% 9.7 25% 22.1  19% -26.8 7.4 
Putamen 48% 3.9 27% 15.6 25% 29.5 9.6 
Fornix 86% -5.9 14% 6.6   6.8 
CC 37% 1.0 32% 8.1 31% -31.5 3.9 
IC 71% -11.0 22% -24.1 7% 17.8 3.7 
Insula 52% -8.4 48% 4.7   13.2 
SN 36% 3.4 33% 17.5 32% 7.2 4.6 
Thalamus 51% 3.5 49% -1.0   3.6 
CSF 87% 3.6 13% 16.1   10.3 
 
Table 4 
Mean silhouette (SI) values for AIC-selected compartment models. The bold highlights the largest SI 
value used to define the number clusters.  
No. of clusters Mean SI 

1 N/A 
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2 0.77 
3 0.76 
4 0.83 
5 0.86 
6 0.81 
7 0.84 
8 0.82 
9 0.84 

10 0.83 
 

 
 
 
 
 

 
Fig. 3. Clustering results obtained using the AIC-selected signal compartment frequency shifts. 
Distinct frequency shift clusters are identified using different colors, and cluster centroid values are 
displayed as radial lines intersecting the circle at points marked by the cross. 
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Fig. 4. A connection map of compartment frequency shifts and volume fractions for all ROI. The 
AIC-based centroids identified using cluster analysis are shown on the frequency axis, and the size of 
the compartments represented using different sized circles are presented vertically. Each region has 
been connected to their respective compartment frequency shift values. The regions have been 
arranged in an order which minimizes the number of overlapping lines, simply to assist with the 
visualization of signal compartment volume fractions and their frequency shifts. 
 
Volume fraction maps of global signal compartments 
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Fig. 5. Voxel-wise parametric mapping of global signal compartment volume fractions for the first 
participant (P1). Corresponding 11th echo time magnetic susceptibility images (in ppm) are provided 
in the first column for comparison. Representative axial slices for each ROI, marked by the area 
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inside the red outlines, were chosen for mapping based on best structural visibility. The gradient color 
bar indicates the volume fraction of each frequency shift contribution.  
 

 
Fig. 6. Fitting error maps for five participants (P1 – P5) used and two participants (P6 – P7) not used 
in the cluster analysis. SER values for each voxel fit were normalized with respect to the largest SER 
value within representative slices of similar anatomical location, and are presented as a percentage for 
interpretive benefits. 
 

 
Fig. 7. Additional volume fraction maps for participants P1, P6 and P7 with corresponding 11th echo 
time magnetic susceptibility maps (in ppm) in the first column. (P1) Zoomed in view in the sagittal 
orientation to visualize compartment volume fraction map changes. The corpus callosum has been 
highlighted in red, and the black arrows depict the subarachnoid space, a key area for cortical CSF 
absorption. Results for (P6) and (P7) are volume fraction maps for participants not included in the 
cluster analysis. The arrows point to the region of the caudate where volume fraction changes are 
present across the 17.8 Hz and 29.5 Hz frequency shift compartments.     
 

Fig. 5 shows volume fraction maps of individual signal compartments. We observe a 

close correspondence of the analytically calculated within-region compartment model 

parameters (refer to Table 3) to the spatial distribution of signal compartments across gray 

and white matter regions (Fig. 5). For example, in the putamen, we observe three signal 

compartments with frequency shifts at 3.6Hz, 15.9Hz, and 29.5Hz; these signal 

compartments fall within the respective global signal frequency shift clusters of 4.6Hz, 

17.8Hz, and 29.5Hz. When inspecting the volume fraction maps for this region, we observe a 
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high degree of localization corresponding to the three global signal compartments (Fig. 5). A 

similar correspondence of model-based parameters to volume fraction maps can be observed 

in white matter regions, such as the internal capsule. The signal compartment with the highest 

volume fraction in this region falls within the -8.4Hz global frequency shift cluster (Fig. 3); 

this result corresponds to a high representation of the -8.4Hz global signal compartment, as 

displayed in Fig. 5. The other two signal compartments in this region, with frequency shifts 

of -24.1Hz (22%) and 17.8Hz (7%) corresponding to the -27.5Hz and 17.8Hz global 

frequency shifts, also display regional localization, but to a lesser degree than the highest 

volume fraction compartment (compare Table 3 and Fig. 5). Such a correspondence can also 

be observed within the CSF (refer to P1 in Fig. 7). The largest within-region compartment 

frequency shift, resolved at 3.6Hz (87%) (Table 3), falls within the 4.6Hz global frequency 

shift cluster; this global frequency shift exhibits a notably high volume fraction within the 

CSF (Fig. 5). Overall, the volume occupancy of the global signal compartments localize in a 

structured manner across the brain regions investigated.  

Normalized SER distributions for voxel-wise volume fraction estimation are 

displayed in Fig. 6 for all seven participants (P1—P5). Of note, the fitting error distributed 

similarly across all participants and a low fitting error was present within the corpus striatum 

(caudate, putamen, and globus pallidus), whilst higher errors were present in the surrounding 

white matter structures (corpus callosum, internal capsule, and fornix).Lastly, the fitting 

errors within the cortical areas do not seem to obviate localization to any particular structure, 

but nonetheless remain higher than sub-cortical regions. 

The corpus callosum and CSF regions are difficult to visualize in the axial orientation 

shown in Fig. 5. Thus, we provide findings in the sagittal view for the first participant (Fig. 7 

and P1). In addition, we have included results from two additional participants not used in the 

cluster analysis (see Fig. 7 and P6 and P7). Whilst data from these two additional participants 
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were not used to define the fixed frequency shifts, the volume fraction maps correspond 

closely to those shown in Fig. 5. For P7 we point out the region of the caudate where a 

discrepancy is present in the volume fraction maps across the 17.8 Hz and 29.5 Hz signal 

compartments. This finding is in agreement with those presented in Fig. 4, wherein the 

caudate frequency shift presents between the 17.8 Hz and 29.5 Hz frequency shifts. 

Therefore, we could expect elevated volume fractions in the 17.8 Hz and 29.5 Hz frequency 

shift compartments.      

  A.                                             B. 

 
Fig. 8. Localization of high frequency (29.5Hz) signal compartment in the globus pallidus (A) and red 
nucleus (B), as indicated by the tailed arrows. 
 
 By fixing global frequency shifts in the compartment model, we were able to identify 

two sub-cortical areas which exhibited an apparent image contrast and remarkably high 

volume fraction of the 29.5Hz frequency shift compartment (see Fig. 8). These areas 

delineate clearly (A) the globus pallidus and (B) the red nucleus, as indicated by the arrows. 

Interestingly, neither of these structures were used to identify the five global frequency shifts.  

 Table 5 summarizes the volume fraction and T2
* values for each of the brain regions 

investigated based on data generated using fixed frequency shifts in the voxel-wise fitting. 

Note, we have bolded numbers corresponding to compartments where we expect the 

contributions based on the cluster analysis results. A correspondence between volume 

fractions presented in Tables 3 and 5 is present in all nine brain regions. Six out of the nine 

brain regions had either a very good or good match, whilst three regions matched partially. 
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The compartment T2
* values provided in Table 5 illustrate the variability within and across 

regions, and the 4.6 Hz frequency shift compartment in general has the largest T2
* value. 

Overall, our results suggest that voxel-wise mappings reflect volume fractions found using 

the region-based analysis.    

   
 
Discussion 

We explain temporal variations in mGRE-MRI data acquired at 7T using complex-

valued signal compartments. Five global signal compartments were shared across a variety of 

gray (caudate, putamen, insula, thalamus, substantia nigra) and white (corpus callosum, 

internal capsule, and fornix) matter regions and CSF. 

 
 
Table 5 
Region-based mean and standard deviation frequency shift compartment volume fractions 
and T2

* values. The mean of voxel values in each region was calculated and then averaged 
across participants. The standard deviation reflect the variation across participants. We have 
defined three levels of matching between voxel-wise volume fractions and region-wise 
volume fractions (Table 3): ### very good, ## good and # partial match with compartments 
identified in Table 3. Values in bold indicate locations where we expect contributions based 
on the region-based cluster analysis. The italicized values for the CSF and caudate indicate a 
potential misalignment due to the use of discrete frequency shifts.  

Compartment -27.5Hz -8.4Hz 4.6Hz 17.8Hz 29.5Hz 
 Volume fraction (%) 

IC# 14.8 ± 9.5 31.0 ± 12.6 17.0 ± 5.2 16.4 ± 4.8 20.9 ± 10.3 
CC### 26.0 ± 5.1 25.1 ± 9.1 30.9 ± 4.1 13.0 ± 5.2 5.2 ± 1.3 
Fornix### 16.2 ± 3.2 36.2 ± 16.4 29.6 ± 12.4 11.1 ± 6.4 7.0 ± 3.1 
Insula### 8.6 ± 3.0 43.3 ± 6.9 24.8 ± 6.6 12.1 ± 0.4 11.2 ± 2.6 
Thalamus### 11.9 ± 4.3 29.3 ± 8.5 40.3 ± 3.2 9.2 ± 21.0 9.2 ± 3.2 
CSF## 18.4 ± 5.2 24.9 ± 10.6  28.3 ± 4.0 18.7 ± 9.4 9.7 ± 3.6 
Caudate## 12.0 ± 2.2  18.3 ± 9.8  27.0 ± 5.3  28.9 ± 12.1 13.8 ± 5.8 
SN# 17.1 ± 7.7 26.5 ± 10.4 23.0 ± 7.3 18.1 ± 4.2 15.3 ± 9.3 
Putamen# 7.1 ± 2.2 26.2 ± 13.5 29.9 ± 10.2 18.6 ± 7.8 18.2 ± 7.0 

 T2
* (ms) 

IC 9.0 ± 6.3 37.0 ± 15.9  32.2 ± 22.6 24.7 ± 14.5 7.4 ± 3.7 
CC 14.8 ± 3.1 38.2 ± 11.8 76.0 ± 9.9 45.5 ± 41.0 3.9 ± 1.7 
Fornix 23.2 ± 7.9 62.9 ± 43.2 74.5 ± 48.1 12.3 ± 14.6 8.7 ± 9.5 
Insula 2.8 ± 3.2 60.6 ± 6.1 78.7 ± 14.7 18.5 ± 6.2 8.1 ± 2.3 
Thalamus 15.0 ± 4.8 57.4 ± 12.9 74.0 ± 10.5 25.7 ± 4.9 7.3 ± 3.9 
CSF 23.7 ± 12.9 51.0 ± 20.3 119.2 ± 45.4 60.2 ± 38.5 17.7 ± 14.7 
Caudate 10.2 ± 2.9 28.1 ± 21.5 56.7 ± 28.9 39.0 ± 5.9 18.0 ± 6.4 
SN 13.2 ± 7.8 28.0 ± 8.7  49.0 ± 14.6 35.3 ± 14.8 11.9 ± 8.7 
Putamen 3.8 ± 2.5 42.3 ± 31.1 68.0 ± 29.2 47.7 ± 18.9 13.1 ± 2.3 
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Evaluating signal compartments in a data driven framework 

 Previous studies which use the three-compartment water fraction model to explain 

temporal trends in mGRE-MRI data have been confined to white matter regions (Li et al., 

2015; Nam et al., 2015; Sati et al., 2013; Wu et al., 2017). Frequency shifts in ‘extracellular’ 

fluid and CSF are commonly assumed to be zero (Alonso-Ortiz et al., 2017; Nam et al., 2015; 

van Gelderen et al., 2012; Wu et al., 2017). A recent study performed by Straub et al. (2017) 

found the CSF to be a stable and robust region for susceptibility referencing in healthy 

participants; the authors report a volume susceptibility of 0.010ppm within this region, 

corresponding to a frequency shift of 3.0Hz at 7T after converting in accordance with Eq. 1. 

In line with these findings, the frequency shift we observe in CSF, suggest that assuming null 

field effects of extracellular tissue may introduce bias (Table 3 and Fig. 5).  

Unlike previous studies (Lee et al., 2017; Li et al., 2015; Sati et al., 2013; Sood et al., 

2017), we used the AIC for model selection, thereby controlling for overfitting (Hurvich and 

Tsai, 1989; Snipes and Taylor, 2014; Vandekerckhove et al., 2014). Data driven methods 

were used to extract global signal influences across brain regions (refer to Table 2, Table 4, 

and Fig. 3). Five of the nine regions investigated contained three signal compartments but the 

frequency shifts of the compartments differed between regions (Table 2). In some regions 

such as CSF, thalamus, and insula, as few as two compartments were sufficient to model the 

signal (Table 2).  

Trends in compartment frequency shifts reflect underlying tissue microstructure 

The allocation of brain regions on the signal compartment relationship map suggests 

an underlying link between mesoscopic tissue properties and signal compartment frequency 

shifts. We observed an underlying microstructural pattern by arranging brain regions in Fig. 4 

such that path lengths of connections were minimized. As the nervous system’s primary relay 
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centre for ascending and descending pathways (Sherman, 2016), the thalamus comprises a 

diverse regional cytoarchitecture; a combination of paramagnetic and diamagnetic inclusions, 

as well as, multiple fiber orientations could result in attenuated susceptibility effects and a 

low number of signal compartments resolved subsequently (see Fig. 4 and Table 3). 

Typically identified as gray matter structures, the insula, caudate, putamen, and substantia 

nigra are commonly characterized by densely packed neuronal cell bodies, synaptic 

terminals, and weakly myelinated regions of the axon hillock (Purves et al., 1997). As a 

whole, these gray matter structures exhibit multiple within-region compartment frequency 

shifts around 17.8Hz and 4.6Hz, and appear adjacent on the relationship map (Fig. 4). The 

three white matter regions investigated (internal capsule, corpus callosum, and fornix) also 

group closely on the relationship map around the -27.5Hz and -8.4Hz frequency shift signal 

compartment (Fig. 4). These results extend prior findings which report a bulk diamagnetic 

susceptibility effect, measured as a reduced resonant frequency within white matter regions 

(Duyn et al., 2007; Fukunaga et al., 2010; Lee et al., 2012).  

In addition, Thapaliya et al. (2017) studied compartment model parameters from the 

genu to the splenium of the corpus callosum in the mid-sagittal plane. Whilst there are 

methodological differences between the studies, such as frequency shifts generated directly 

from phase values versus from susceptibilities and referencing to extracellular water versus 

no specific referencing, three specific observations can be made. Firstly, our findings confirm 

the presence of three compartments in the corpus callosum. Secondly, our frequency shift 

separations between compartments reported in Table 3 are similar to those reported by them 

(32.5 Hz is in the 10-38 Hz range, and 7.1 Hz is in the 6-12 Hz range). Thirdly, they reported 

a larger axonal water fraction than myelin water fraction, and significantly smaller T2
* value 

for the myelin compartment, both of which agree with our findings in Table 5.  
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The global frequency shifts ascertained from our data driven analysis allowed us to 

resolve volume fractions of identified mGRE-MRI signal influences (Fig. 4). Representative 

image slices for one participant were mapped to allow a ROI-based analysis of spatial 

distributions of global signal compartments (Fig. 4). The error distributions, provided in Fig. 

6, demonstrate a similar quality of voxel-wise fitting across all participants. This result 

validates the generalizability of the extent to which these global signal compartments 

influence the mGRE-MRI signal. Furthermore, this exercise validated our analytical 

evaluation of inter-region signal compartment trends (Fig. 4), and elucidated the utility of 

providing new quantitative contrast mechanisms for clinical and empirical purposes.  

Considering the biophysical origins of signal compartments and respective frequency shifts 

The 29.5Hz signal compartment most likely reflects the paramagnetic influence of 

non-heme tissue iron (Deistung et al., 2013; Drayer et al., 1986; Fukunaga et al., 2010; 

Haacke et al., 2007, 2007; Schenck and Zimmerman, 2004; Schweser et al., 2011b, 2012). 

This compartment was dominant in the putamen, substantia nigra, caudate, globus pallidus 

and red nucleus (refer to Fig. 5 and Fig. 8), regions known to have a high iron concentration 

(Aquino et al., 2009; Drayer et al., 1986; Hallgren and Sourander, 1958; Schweser et al., 

2011).  

A high volume fraction of the 17.8Hz signal compartment also occurred in the 

caudate, putamen, and substantia nigra (see Figs. 5 and 7) and may reflect iron in the ferrous 

state. Trace amounts of ferritin and transferrin bound iron have been reported in the CSF 

(Khalil et al., 2014; Straub et al., 2017) and may explain the minor signal compartment (13%) 

near the 17.8Hz cluster in CSF (Figs. 5 and 7, and Table 5). The largest signal compartment 

in CSF was the 3.6Hz frequency shift compartment (87%). This is consistent with the finding 

by Straub et al. (2017) of a bulk CSF frequency shift of 3.0 Hz at 7T.  
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The 3.6Hz frequency shift of the signal compartment in CSF lies in close proximity to 

the 4.6Hz global frequency shift cluster (Fig. 4). Though CSF is not found within the 

interstitial brain parenchyma (Jessen et al., 2015), the parameter values for this compartment 

are suggestive of extracellular water. The magnetic properties of the extracellular space have 

been related to cerebrospinal fluid in previous studies (Li et al., 2015). Distributed throughout 

extracellular space are dynamic quantities of solvated salts, proteins and glucose; these ionic 

and macromolecular moieties could be captured collectively as a signal compartment, 

previously unobservable due to decreased sensitivity to susceptibility influences at lower 

field strengths (Alonso-Ortiz et al., 2017; Duyn et al., 2007; van Gelderen et al., 2012; 

Wharton and Bowtell, 2012). A lack of structural coherence amidst these inclusions, 

however, provide reason as to why this signal compartment exhibits the lowest magnitude of 

induced field change. 

Previous studies that used the three-pool model report frequency shifts for axonal 

water in a range comparable to the -8.4Hz signal compartment identified in our study (Li et 

al., 2015; Sati et al., 2013). Sati et al. (2013) report axonal water frequency shifts at -6.0Hz in 

the optical radiatum and -4.1Hz in the splenium of the corpus callosum; frequency shifts in 

the same range -6.3Hz in the optic radiatum and -6.5Hz in the splenium of the corpus 

callosum were observed by Li et al. (Li et al., 2015). The orientation of axons with respect to 

the scanner field influences frequency shift (Sati et al., 2013) Our results align with previous 

studies which report negative echo-time dependent frequency differences in orientation 

dependent white matter structures (Duyn et al., 2007; Duyn and Schenck, 2017; Lee et al., 

2012; Liu et al., 2011; Wharton and Bowtell, 2012).  

Prior studies report diamagnetic susceptibility properties referenced to CSF for 

proteins in gray and white matter (He and Yablonskiy, 2009; Leutritz et al., 2013; Luo et al., 

2010; Zhong et al., 2008). In an early study by Hong et al., (1971), rhodopsin, a G-protein-
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coupled receptor (GPCR) was reported be the primary constituent for orientation dependent 

magnetic susceptibility effects in rod cells, in comparison to phospholipid molecules. Recent 

studies extend these findings by reporting diamagnetic susceptibility properties for proteins in 

gray and white matter brain regions (referenced to CSF), ranging on the order of parts per 

billion (ppb) in the susceptibility domain and Hertz (Hz) in the frequency domain, at 7T (He 

and Yablonskiy, 2009; Leutritz et al., 2013; Luo et al., 2010; Zhong et al., 2008). The -

27.5Hz cluster centroid, identified in Fig. 3 and mapped in Fig. 4, may reflect the bulk 

susceptibility effect arising from the microscopic arrangement of proteins in the brain. The 

bulk diamagnetic susceptibility effects of lipids and proteins, however, were reported to field 

effects of similar magnitude, but in the opposite direction, in comparison to chemical 

exchange effects (Leutritz et al., 2013). Thus, though the bulk susceptibility effect of proteins 

could potentially be observed via signal compartmentalization, image contrast may be 

attenuated in the volume fraction maps due to field averaging chemical exchange effects.  

Methodological considerations 

Previous studies have used only a three compartment model (with three parameters 

for each compartment) defined by white matter characteristics. Our results suggest that the 

three compartment model is indeed appropriate for white matter (see Tables 2 and 3 and 

values associated with the corpus callosum). Overall, we found two or three frequency shift 

compartments for any one brain region studied (Table 2). Hence, the use of a five 

compartment model with all parameters left free leads to overfitting in all brain regions (see 

Table 2 and trend in AIC values for model selection). Therefore, interpretation of parameter 

values generated using a five compartment model with all parameters left free is not 

straightforward, as parameter values can start to deviate from their expected values through 

counteraction with other parameters. To compensate for overfitting, we decided to fix 

frequency shifts, the model parameters linked with biology.  
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Multi-angle acquisitions were not used in this study. Radial susceptibility anisotropy 

is thought to result from the orientation of glycolipids and phospholipids with respect to the 

static magnetic field (He and Yablonskiy, 2009; Lee et al., 2017; Li et al., 2012; Liu, 2010; 

Wharton and Bowtell, 2012; Xu et al., 2017). Both the anisotropy of tissue and susceptibility 

could explain the high fitting error observed in white matter structures surrounding the corpus 

striatum (Fig. 6). This result falls in line with previous reports of high structured errors in 

white matter regions, arising from the effects of tissue and susceptibility anisotropy on signal 

frequency dispersion (Alonso-Ortiz et al., 2017; Jongho Lee et al., 2017; van Gelderen et al., 

2012; Wharton and Bowtell, 2012; Yablonskiy and Sukstanskii, 2017).  

Studies using GRE-MRI signal compartments have investigated the use of non-

filtered and filtered phase data (Nam et al., 2015), and used susceptibility maps obtained 

using a QSM pipeline (Nissi et al., 2015; Sood et al., 2017; Wu et al., 2017). The latter 

studies suggest that data can be improved using the QSM pipeline by overcoming non-local 

phase contrast and orientation dependence. Since the QSM pipeline in essence is a phase 

filter which maps to a quantitative range, it is plausible that residual background fields are 

present in the data. We used the same QSM pipeline across all echo images, hence any 

leftover background effects will consistently be present in all echo images. In terms of signal 

compartmentalization, this can lead to an offset in the compartment frequency shift (refer to 

Fig. 4 for spreads about identified compartment frequency shifts). Future work should 

investigate how different QSM pipelines influence the distribution of frequency shifts for 

each signal compartment.  

Our investigation involved nine brains regions segmented manually in individual 

participants. We opted for this approach to maximize segmentation accuracy. As such, we 

have not considered all tissue types or classes within the brain. It is therefore plausible that 

other frequency shift compartments in brain regions not investigated could be present. Future 
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research could investigate the total number of frequency shift compartments in the human 

brain with either the use of additional brain regions generated using a segmentation package, 

or opt to identify them using a purely data driven approach based on voxel-wise fitting across 

the entire brain. 

Conclusions 

Our findings suggest the presence of five global signal compartments in the gray and 

white matter regions investigated. Furthermore, the frequency shift signatures exhibited by 

these signal compartments are likely to reflect underlying differences in tissue 

microstructure. Our approach may assist in identifying parametric biomarkers of neurological 

disorders. 
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