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Abstract

Gradient recalled echo magnetic resonance ima@RE(MRI) at ultra-high field holds great
promise for new contrast mechanisms and delineaftiutative tissue compartments that
contribute to the multi-echo GRE-MRI signal may sidictural characterization. Several studies
have adopted the three water-pool compartment nmodgudy white matter brain regions,
associating individual compartments with myelingpaal and extracellular water. However, the
number and identifiability of GRE-MRI signal compraents has not been fully explored. We
undertook this task for human brain imaging dataltidle echo time GRE-MRI data were acquired
in five healthy participants, specific anatomidalistures were segmented in each dataset (sulastanti
nigra, caudate, insula, putamen, thalamus, forntgrnal capsule, corpus callosum and
cerebrospinal fluid), and the signal fitted with aets comprising one to six signal compartments
using a complex-valued plane wave formulation. dmfation criteria and cluster analysis methods
were used to ascertain the number of distinct cotmgants within the signal from each structure and
to determine their respective frequency shifts.itéatified five principal signal compartments with
different relative contributions to each structsreignal. Voxel-based maps of the volume fraction
of each of these compartments were generated andrddrated spatial correlation with brain

anatomy.

Keywords: Ultra-high field, GRE-MRI, signal compartmentseduency shift, magnetic
susceptibility, tissue microstructure.



I ntroduction

In the brain, regional differences in the echo taependence of the multi-echo GRE-
MRI (mGRE-MRI) signal may reflect the influencewariations in tissue microstructure
(Cronin et al., 2017; Schweser et al., 2011a; Saad., 2017; Yablonskiy and Haacke,
1994). These effects have been characterized belimgdthe mGRE-MRI signals in terms
of signal compartments (Du et al., 2007; Hwand.e2810; Sati et al., 2013). The
compartments are postulated to reflect the micatesg 100 m) magnetic resonance
imaging (MRI) voxel constituents, thereby contribgtto efforts to map, characterize and
guantify brain tissue microstructure (Nam et 8012, Thapaliya et al., 2017; Wu et al.,

2017).

In myelin water fraction imaging, white matter GRERI signal is modelled by a
three-pool model reflecting myelin, axonal and aséllular water pools (Du et al., 2007;
Hwang et al., 2010; Nam et al., 2015; Sati et2fl13; Thapaliya et al., 2017; Wu et al.,
2017). Sood et al. (Sood et al., 2017) demonsttategoral trends in QSM in non-white
matter brain regions (i.e. caudate, putamen, sntigtaigra, thalamus, pallidum, and red
nucleus), and attributed them to variations in axtbitecture such as differences in cell
density and orientation and iron content (Abduljetial., 2003; Drayer et al., 1986;
Fukunaga et al., 2010; Schenck and Zimmerman, ZD&dgrich et al., 2009). The signal
compartments in non-white matter brain regions iert@be fully explored. We therefore
investigated the number of signal compartmentsramge of human brain regions (including
gray matter, white matter and CSF) using a dataedrapproach and determined whether

signal compartments are shared by different biegions.



M ethods

Data acquisition

The experiment protocol was approved by the Unityeod Queensland Human
Research Ethics Committee. Informed consent wagged by seven healthy adult
volunteers of mean age of 33 + 3 yed&nsvivo brain imaging was conducted on a 7T whole-
body MRI scanner (Siemens Healthcare, Erlangenn@ey) equipped with a 32-channel
head coil (Nova Medical, Wilmington, Massachuse#s30 echo 3D gradient recalled echo
scan with monopolar echo readout was acquired thétollowing acquisition settings: TE
= 2.04 ms and echo spacing of 1.53 ms, TR = 5flipangle = 15, voxel size =1 x 1 x
1mm, matrix size = 210 x 168 x 144, bandwidth =H&00xel and phase encoding direction

acceleration = 2. Data was acquired in 6 min 13 s.

Sgnal processing and quantitative susceptibility mapping

The magnitude image of each channel was usednodarhannel mask using the
BET tool provided as part of MIPAV 7.3.0 (http:/fmawv.cit.nih.gov/). The result was read
into MATLAB 2015b (The MathWorks, Natick, Massacktts) from which a binary mask
was created. STI Suite V2.2 (http://people.duke.edi60/) was used to process
susceptibility maps in a channel-by-channel marem®described previously (Bolimann et
al., 2015). IHARPERELLA (background phase remoaal)l ILSQR in STI Suite were used

to generate 3D susceptibility maps for each eahe.ti

Region-of-interest selection

Nine brain regions were considered in this studg:daudate, putamen, fornix, corpus
callosum, internal capsule, insula, substantiaapitiralamus, and cerebrospinal fluid (CSF).
The white matter regions (corpus callosum, intecagisule, and fornix) were selected to

enable comparison with the results of previous myehter fraction imaging studies. Five



sub-cortical gray matter regions, namely the cadaitamen, insula, substantia nigra, and
thalamus were selected as a representative safnpemll sub-cortical gray matter
structures. Manual segmentation was performed RAW (illustrated in Fig. 1). To

minimize the influence of partial volume effectsgmentation boundaries were kept at least

two voxels away from the boundary with adjacentarg,

Saggital
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Internal Capsule . Corpus Callosum
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Fig. 1. lllustration of the brain regions investigated.

Complex signal generation

To reduce the influence of non-local magnetic elde converted tissue phase to
guantitative susceptibility maps which were useddtimate frequency shift to overcome
drawbacks of working with tissue phase directly (éf@al., 2017) using:

YBo
M= x g

wherey denotes the magnetic susceptibility value genénaseng the STI Suite

pipeline,y is the gyromagnetic ratio of hydrogen @w= 7T (Reichenbach et al., 1997;



Schweser et al., 2011; 2016). The complex signahel echo timeg(t)] was generated

using magnitudeA,) and frequency shiftAf,)), averaged across voxels within each region:
S () = Ay (t)e "2 mt,

Temporal profiles of the multi-echo magnitude anslceptibility signal for all ROl have

been demonstrated previously (Sood et al., 2013%e Nve used the feference frame here

whereas previously thereference frame was used, resulting in a diffezencign of

compartment frequency shifts.

Sgnal compartmentalization
In accordance with previous studies (Li et al.,204am et al., 2015; Sati et al.,
2013; Wu et al., 2017), compartments of the com@&E-MRI signal were modelled using

a relaxation modulated amplitude modulated planeafarmulation.

L _ianaf

N
S©=) awe H

where S(t) is the signal is theiztt)tal number of signal compartments usdd tbe
measured signal, »; is the compartment spin-spin relaxation time goonds, in the
presence of field inhomogeneities akfdis the compartment frequency shift. We considered
the cases dfl = 1 to 6. Any particular brain region was founchtove a maximum of three
compartments (refer to Table 2) and, have providddes for an additional three
compartments to visualize the convexity of inforimatioss due to overfitting. Phase shift
was not required as background field had been rech@u et al., 2014). As magnetic field
changes introduced by micro-scatel(00um) effects were assumed to be confined to
millimeter-scale (100um — 1000pum) voxels, a dipeleresentation for signal compartments
was not used (Chen et al., 2013; Sood et al., 2017)

Non-linear least squares fitting implemented in MAB (Mathworks, Natick, MA,

USA) was used to estimate model parame#&rsT{(»;, andAf)). Initial values and



optimization search ranges are summarized in Thifigted parameters were stable despite
varying initial values (see Supplementary Table 1).

Tablel

Initial values and search range used to estimatnpsters of one to six compartment signal models.
S(TE,) denotes the magnitude of the first-echo sighiak 1 to 6 (number of compartments). The
maximum number iterations wabx 40,000.

A (a.u.) T, (ms) Af (Hz)
Initial value |S(TED| 30 0
N
Lower bound 0 0 -150

Upper bound 2 x |sE)| 200 150
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Fig. 2. Data processing and analysis pipeline—examplengiwethe caudate in one participant. (a)
ROIs were selected from combined magnitude and owdisusceptibility data (mask manually
generated via magnitude images). (b) Averaged madmiand susceptibility values were calculated
for each ROI; averaged susceptibility values wereserted to frequency shifts at each echo time. (c)
The complex signal was generated using as a funofismagnitude, frequency shift, and echo-time,
and fitted to a multi-compartment (one to six comipant) model. (d) The most parsimonious
compartment models were selected via the AIC fahér analysis.



Model selection and cluster analysis

Out of the seven datasets, we used only the fistdfarticipants’ data for model
selection and cluster analysis. The other two gigent datasets were used for validation.
Achieving model parsimony, or the ideal balanceveen bias and variance, requires a
model to exhibit accuracy and simplicity in desitrghthe measured data (Vandekerckhove et
al., 2014). The Akaike Information Criteria (AlIC)a® used to control overfitting in model
selection (Akaike, 2011; Naik et al., 2007). The&CAine tunes model parsimony by
reinforcing improvements in quality-of-fit and péisang an increasing number of
parameters. Further, the AIC allows the compar@dwo or more models in describing the
measured data via a maximum likelihood estimat@hen fitting a model using least
squares regression, the likelihood function caedienmated by the residual sum of squares

(RSS) of the least squares fit, yielding:

RSS

AIC = nlog (T) + 2k,

wheren is the number of independent measurementsk agpresents the number of
unknown parameters. When implementing the AIC femall sample, or measurement (i.e.

n/k < 40) size, an additional bias correction pgni@rm is required (Bedrick and Tsai, 1994;

Burnham and Anderson, 2004); this yields a ‘cogdcAIC (AIC:) metric:

2k(k + 1)

AlIC. = AIC + ———.
¢ +n—k—1

The model with an AIC value lower than the two adjat models is the most
parsimonious choice. Note, the first lowest AlCueathould be chosen to avoid overfitting.

To determine whether signal compartments were dhzatveen different brain regions, we



performed a k-means cluster analysis of compartifinegtiency shifts associated with the
most parsimonious model for each region (Arthur ¥adsilvitskii, 2007). These
compartment frequency shift clusters represent contyroccurring components of the
MGRE-MRI signal phase across the nine regions dersil; as such, these clusters are
herein referred to as ‘global frequency shiftsgleaf which correspond to a ‘global signal
compartment’. It is important to note that glob@dguency shifts and signal compartments
have been derived from a subset of brain regiodsadditional ones may exist in brain
regions not considered in this study. The numbetusdters was determined using a
silhouette (SI) analysis using the k-means andisdtfon tools in MATLAB.

Implementation of model selection and cluster asialgteps are summarized in Fig. 2.

Connection map

Based on the first five participants’ data, an gedl connection map was created to
visualize how frequency shifts of signal compartteesf each ROI linked to frequency shifts
associated with the global signal compartmentss @lhowed us to understand the extent to
which global signal compartments contributed tavitial ROIs. This analysis was
performed by (1) arranging the global compartmesqudency shifts on a frequency spectrum
(set to a loose range so as to include all valy2splotting volume fraction weighted shape
representations of within-region compartment fregyeshifts on the frequency spectrum, (3)
linking the within-region compartment frequencyfthto their respective brain regions, and
(4) ordering the brain regions by minimizing therpkength of their connections. All
components of this analysis were carried out ustagdard illustration tools in Adobe

lllustrator’ CC 2015 (Adobe Systems, San Jose, CA, USA).



Generating volume fraction maps based on compartment frequency shifts

The complex valued voxel signal was modelled usifige-compartment model with
frequency shifts fixed to the five global frequerstyfts identified by the cluster analysis
(Fig. 3). The standard error (SER) was calculatecdtdch multi-compartment fit by (1)
normalizing the real and imaginary residual sursgfared errors for each echo time, and (2)
summing the normalized residual squared errorssaath echo times. We performed two
levels of validation. Firstly, we generated a voeufraction map for the first participant and
assessed whether fixing of frequency shifts resnltspresentative volume fractions.
Secondly, we resolved volume fraction maps basethtasets not used in the cluster
analysis. We have defined three levels of matchioegaeen volume fractions obtained using
region-based and voxel-based analyses. In thetsesaluse the ### symbol to indicate that
the largest volume fractions and their orderingespond between the region-based and
voxel-based analyses (i.e. very good match). Thebsy## identifies brain regions for
which the largest volume fraction compartmentsespond (i.e. good match). Finally, # has
been used to highlight the brain region for whicle cgompartment volume fraction is

mismatched (i.e. partial match).

Results

Information criteria indicate a unique number signal compartments for individual brain
regions

Table2

AIC values for one to six compartment mod&ssults from the one (1C) to six (6C) compartment

model AIC analysis for each ROI. The smallest AKlue, used for model selection, is in bold face.
Number of compartments

1C 2C 3C 4C 5C 6C
Caudate 110 103 95 103 121 149
Putamen 121 104 103 109 126 157
Fornix 98 86 93 89 108 141
CC 99 90 79 85 103 134
IC 114 103 77 88 96 127

Insula 127 110 113 118 136 168



SN 81 80 75 81 99 127
Thalamus 69 67 71 72 90 121
CSF 105 98 102 113 132 166

The AIC analysis suggests the presence of moredharsignal compartment for all regions
investigated (Table 2). Two signal compartmentsaweentified for the fornix, CSF, insula
and thalamus regions. Three signal compartments sedected for the caudate, putamen,
corpus callosum, internal capsule and substamgi@ani able 3 provides individual parameter
values obtained using the AIC-selected compartmerdels.
Cluster analyses reveal global inter-region signal compartments

Via the Sl analysis, five frequency shift clustersre identified across brain regions
considered (Table 4). Fig. 3 elucidates the clusgeof compartment frequency shifts,
ascertained via k-means clustering. The five fragyeshift clusters exhibited cluster
centroids at -27.5Hz, -8.4Hz, 4.6Hz, 17.8Hz, anbB9; each centroid was labelled as a
‘global frequency shift’. Fig. 3 displays the dibtrtion of signal compartments across brain
regions according to frequency shift.

Table3

Estimated parameters for AIC-selected signal cotmprt models for each brain region. Frequency
shifts have been highlighted using bold face, asldme fraction of each compartment is expressed
as a percentage. Compartments are ordered froeslaiysmallest volume fraction occupied. A1-A3
are compartment volume fractiomd;-Af; are compartment frequency shifts, and SER isttedard
error of fit.

A, Afl(HZ) A, Afg (HZ) As Afg(HZ) SER (%)
Caudate 56% 9.7 25% 221 19% -26.8 7.4
Putamen 48% 3.9 27% 15.6 25% 29.5 9.6
Fornix 86% -5.9 14% 6.6 6.8
CC 37% 1.0 32% 8.1 31% -31.5 3.9
IC 71% -11.0 22% -24.1 7% 17.8 3.7
Insula 52% -84 48% 47 13.2
SN 36% 34 33% 175 32% 7.2 4.6
Thalamus 51% 35 49% -1.0 3.6
CSF 87% 3.6 13% 16.1 10.3

Table4

Mean silhouette (SI) values for AlC-selected cortipant models. The bold highlights the largest S
value used to define the number clusters.

No. of clusters Mean Sl

1 N/A
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Fig. 3. Clustering results obtained using the AIC-selectegghal compartment frequency shifts.
Distinct frequency shift clusters are identifiedngsdifferent colors, and cluster centroid values a
displayed as radial lines intersecting the cirtlpants marked by the cross.
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Fig. 4. A connection map of compartment frequency shifi @lume fractions for all ROI. The
AIC-based centroids identified using cluster arialgse shown on the frequency axis, and the size of
the compartments represented using different sizelks are presented vertically. Each region has
been connected to their respective compartmentidémery shift values. The regions have been
arranged in an order which minimizes the numbeneflapping lines, simply to assist with the
visualization of signal compartment volume fracti@nd their frequency shifts.

Volume fraction maps of global signal compartments
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Fig. 5. Voxel-wise parametric mapping of global signal camment volume fractions for the first
participant (P1)Corresponding T echo time magnetic susceptibility images (in ppne) provided
in the first column for comparison. Representatixil slices for each ROI, marked by the area



inside the red outlines, were chosen for mappirsgth@n best structural visibility. The gradientoeol
bar indicates the volume fraction of each frequestdft contribution.
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Fig. 6. Fitting error maps for five participants (P1 — BSgd and two participants (P6 — P7) not used
in the cluster analysis. SER values for each viikelere normalized with respect to the largest SER
value within representative slices of similar angital location, and are presented as a percentage f
interpretive benefits.

P3 P4
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Fig. 7. Additional volume fraction maps for participants, 6 and P7 with corresponding™echo
time magnetic susceptibility maps (in ppm) in thistfcolumn. (P1) Zoomed in view in the sagittal
orientation to visualize compartment volume fractinap changes. The corpus callosum has been
highlighted in red, and the black arrows depictgbkarachnoid space, a key area for cortical CSF
absorption. Results for (P6) and (P7) are voluraetion maps for participants not included in the
cluster analysis. The arrows point to the regiothefcaudate where volume fraction changes are
present across the 17.8 Hz and 29.5 Hz frequeriftycempartments.

Fig. 5 shows volume fraction maps of individualnsigcompartments. We observe a
close correspondence of the analytically calculatgkin-region compartment model
parameters (refer to Table 3) to the spatial distion of signal compartments across gray
and white matter regions (Fig. 5). For examplghaputamen, we observe three signal
compartments with frequency shifts at 3.6Hz, 15,94 29.5Hz; these signal
compartments fall within the respective global siginequency shift clusters of 4.6Hz,

17.8Hz, and 29.5Hz. When inspecting the volumetisaanaps for this region, we observe a



high degree of localization corresponding to threelglobal signal compartments (Fig. 5). A
similar correspondence of model-based parametessitione fraction maps can be observed
in white matter regions, such as the internal dapdine signal compartment with the highest
volume fraction in this region falls within the 481z global frequency shift cluster (Fig. 3);
this result corresponds to a high representatidhe$8.4Hz global signal compartment, as
displayed in Fig. 5. The other two signal comparttaén this region, with frequency shifts
of -24.1Hz (22%) and 17.8Hz (7%) corresponding®-27.5Hz and 17.8Hz global
frequency shifts, also display regional localizatibut to a lesser degree than the highest
volume fraction compartment (compare Table 3 aigd $). Such a correspondence can also
be observed within the CSF (refer to P1 in Fig.The largest within-region compartment
frequency shift, resolved at 3.6Hz (87%) (Tablef&@)s within the 4.6Hz global frequency
shift cluster; this global frequency shift exhibgsiotably high volume fraction within the
CSF (Fig. 5). Overall, the volume occupancy ofdhabal signal compartments localize in a
structured manner across the brain regions in\astig

Normalized SER distributions for voxel-wise voluiingction estimation are
displayed in Fig. 6 for all seven participants (FR5): Of note, the fitting error distributed
similarly across all participants and a low fittiagor was present within the corpus striatum
(caudate, putamen, and globus pallidus), whilgtérigerrors were present in the surrounding
white matter structures (corpus callosum, intecaglsule, and fornix).Lastly, the fitting
errors within the cortical areas do not seem taaibvocalization to any particular structure,
but nonetheless remain higher than sub-corticabnsg

The corpus callosum and CSF regions are diffieuitisualize in the axial orientation
shown in Fig. 5. Thus, we provide findings in tlagigtal view for the first participant (Fig. 7
and P1). In addition, we have included results ftavm additional participants not used in the

cluster analysis (see Fig. 7 and P6 and P7). Wihaltst from these two additional participants



were not used to define the fixed frequency shifis,volume fraction maps correspond
closely to those shown in Fig. 5. For P7 we poirtttbe region of the caudate where a
discrepancy is present in the volume fraction negess the 17.8 Hz and 29.5 Hz signal
compartments. This finding is in agreement withsthpresented in Fig. 4, wherein the
caudate frequency shift presents between the 17 & 29.5 Hz frequency shifts.
Therefore, we could expect elevated volume frastiarthe 17.8 Hz and 29.5 Hz frequency
shift compartments.

A. B.
100%

1 oo
80%
70%
60%
50%
40%
30%
20%
10%
0%

Fig. 8. Localization of high frequency (29.5Hz) signal quartment in the globus pallidus (A) and red
nucleus (B), as indicated by the tailed arrows.

By fixing global frequency shifts in the compartmenodel, we were able to identify
two sub-cortical areas which exhibited an apparaage contrast and remarkably high
volume fraction of the 29.5Hz frequency shift comipeent (see Fig. 8). These areas
delineate clearly (A) the globus pallidus and (8 ted nucleus, as indicated by the arrows.
Interestingly, neither of these structures weralusadentify the five global frequency shifts.

Table 5 summarizes the volume fraction apdvBlues for each of the brain regions
investigated based on data generated using fieegiéncy shifts in the voxel-wise fitting.
Note, we have bolded numbers corresponding to campats where we expect the
contributions based on the cluster analysis reséiltorrespondence between volume
fractions presented in Tables 3 and 5 is preseait imne brain regions. Six out of the nine

brain regions had either a very good or good mattiist three regions matched partially.



The compartmentf values provided in Table 5 illustrate the varigpivithin and across
regions, and the 4.6 Hz frequency shift compartriregeneral has the largest Value.
Overall, our results suggest that voxel-wise magpireflect volume fractions found using

the region-based analysis.

Discussion

We explain temporal variations in mGRE-MRI datawacep at 7T using complex-
valued signal compartments. Five global signal cammpents were shared across a variety of
gray (caudate, putamen, insula, thalamus, subataigiia) and white (corpus callosum,

internal capsule, and fornix) matter regions anéCS

Table5

Region-based mean and standard deviation frequaiftycompartment volume fractions

and T, values. The mean of voxel values in each region eaéculated and then averaged
across participants. The standard deviation reftecvariation across participants. We have
defined three levels of matching between voxel-wisleme fractions and region-wise
volume fractions (Table 3): ### very good, ## gaad # partial match with compartments
identified in Table 3. Values in bold indicate lticas where we expect contributions based
on the region-based cluster analysis. The italtcizaues for the CSF and caudate indicate a
potential misalignment due to the use of discretgqufency shifts.

Compartment -27.5Hz -8.4Hz 4.6Hz 17.8Hz 29.5Hz
Volumefraction (%)
IC* 148+ 9.5 31.0+126 17.0+5.2 16.4+ 4.8 20.9+10.3
cc* 26.0+5.1 25.1+9.1 309+4.1 13.0+5.2 52+1.3
Fornix** 16.2+3.2 362+16.4 296+12.4 11.1+6.4 7.0+3.1
Insuld™ 8.6+3.0 433+6.9 248+ 6.6 12.1+ 0.4 11.2+26
Thalamu&™” 11.9+43 29.3+8.5 40.3+3.2 9.2+21.0 9.2+3.2
CSF* 18.4+5.2 249+10.6 283+4.0 187+ 9.4 9.7+3.6
Caudat® 12.0+2.2 18.3+9.8 27.0+5.3 289+ 12.1 13.8+5.8
SN 17.1+7.7 26.5+10.4 230+7.3 181+4.2 15.3+9.3
Putameh 7.1+22 26.2+135 29.9+10.2 186+ 7.8 182+ 7.0
T, (m9)
IC 90+6.3 370+ 159 32.2+22.6 247 + 14.5 7.4+3.7
cc 148+3.1 382+11.8 76.0+9.9 45.5+41.0 39+17
Fornix 23.2+7.9 629+432 745+48.1 12.3+14.6 8.7+95
Insula 28+3.2 60.6 + 6.1 787 +14.7 185+6.2 8.1+23
Thalamus 15.0+4.8 574+129 740+105 25.7+4.9 7.3+3.9
CSF 23.7+12.9 51.0+20.3 119.2+45.4 60.2 + 38.5 17.7 +14.7
Caudate 102+2.9 28.1+215 56.7+28.9 39.0+5.9 18.0+ 6.4
SN 13.2+7.8 28.0+8.7 49.0+14.6 353+ 14.8 11.9+8.7
Putamen 3.8+25 42.3+31.1 68.0+29.2 47.7+18.9 13.1+2.3




Evaluating signal compartments in a data driven framework

Previous studies which use the three-compartmatgniraction model to explain
temporal trends in MGRE-MRI data have been conftoeghite matter regions (Li et al.,
2015; Nam et al., 2015; Sati et al., 2013; Wu et28l17). Frequency shifts in ‘extracellular’
fluid and CSF are commonly assumed to be zero @dddrtiz et al., 2017; Nam et al., 2015;
van Gelderen et al., 2012; Wu et al., 2017). Ameéseudy performed by Straub et al. (2017)
found the CSF to be a stable and robust regioausceptibility referencing in healthy
participants; the authors report a volume suscaiptibf 0.010ppm within this region,
corresponding to a frequency shift of 3.0Hz at #&raconverting in accordance with Eq. 1.
In line with these findings, the frequency shift aleserve in CSF, suggest that assuming null

field effects of extracellular tissue may introdumas (Table 3 and Fig. 5).

Unlike previous studies (Lee et al., 2017; Li et 2015; Sati et al., 2013; Sood et al.,
2017), we used the AIC for model selection, theredytrolling for overfitting (Hurvich and
Tsai, 1989; Snipes and Taylor, 2014; Vandekerckleaia., 2014). Data driven methods
were used to extract global signal influences achwain regions (refer to Table 2, Table 4,
and Fig. 3). Five of the nine regions investigatedtained three signal compartments but the
frequency shifts of the compartments differed betweegions (Table 2). In some regions
such as CSF, thalamus, and insula, as few as tmpawments were sufficient to model the

signal (Table 2).

Trends in compartment frequency shifts reflect underlying tissue microstructure

The allocation of brain regions on the signal cortipant relationship map suggests
an underlying link between mesoscopic tissue pta@seand signal compartment frequency
shifts. We observed an underlying microstructuedtgrn by arranging brain regions in Fig. 4

such that path lengths of connections were minichias the nervous system’s primary relay



centre for ascending and descending pathways (Sime2016), the thalamus comprises a
diverse regional cytoarchitecture; a combinatioparamagnetic and diamagnetic inclusions,
as well as, multiple fiber orientations could résalattenuated susceptibility effects and a
low number of signal compartments resolved subsetuésee Fig. 4 and Table 3).
Typically identified as gray matter structures, ithgula, caudate, putamen, and substantia
nigra are commonly characterized by densely paokedonal cell bodies, synaptic
terminals, and weakly myelinated regions of theraitiock (Purves et al., 1997). As a
whole, these gray matter structures exhibit mudtipithin-region compartment frequency
shifts around 17.8Hz and 4.6Hz, and appear adjaxcetite relationship map (Fig. 4). The
three white matter regions investigated (intermagistile, corpus callosum, and fornix) also
group closely on the relationship map around ti7e512z and -8.4Hz frequency shift signal
compartment (Fig. 4). These results extend priatifigs which report a bulk diamagnetic
susceptibility effect, measured as a reduced regdrexjuency within white matter regions

(Duyn et al., 2007; Fukunaga et al., 2010; Led.eP@12).

In addition, Thapaliya et al. (2017) studied conip@nt model parameters from the
genu to the splenium of the corpus callosum imtige sagittal plane. Whilst there are
methodological differences between the studied) asdrequency shifts generated directly
from phase values versus from susceptibilitiesraferencing to extracellular water versus
no specific referencing, three specific observatican be made. Firstly, our findings confirm
the presence of three compartments in the corglosom. Secondly, our frequency shift
separations between compartments reported in Badte similar to those reported by them
(32.5 Hz is in the 10-38 Hz range, and 7.1 Hz ih&6-12 Hz range). Thirdly, they reported
a larger axonal water fraction than myelin watecfion, and significantly smaller, Tvalue

for the myelin compartment, both of which agreewatr findings in Table 5.



The global frequency shifts ascertained from oua daiven analysis allowed us to
resolve volume fractions of identified mGRE-MRIs#d influences (Fig. 4). Representative
image slices for one participant were mapped tmnal ROI-based analysis of spatial
distributions of global signal compartments (Fijy. ®he error distributions, provided in Fig.
6, demonstrate a similar quality of voxel-wiseirfigf across all participants. This result
validates the generalizability of the extent to ethihese global signal compartments
influence the MGRE-MRI signal. Furthermore, thisreise validated our analytical
evaluation of inter-region signal compartment te(féig. 4), and elucidated the utility of

providing new quantitative contrast mechanism<hmical and empirical purposes.

Considering the biophysical origins of signal compartments and respective frequency shifts

The 29.5Hz signal compartment most likely refleébts paramagnetic influence of
non-heme tissue iron (Deistung et al., 2013; Draye., 1986; Fukunaga et al., 2010;
Haacke et al., 2007, 2007; Schenck and Zimmern0¥%;2Schweser et al., 2011b, 2012).
This compartment was dominant in the putamen, anbatnigra, caudate, globus pallidus
and red nucleus (refer to Fig. 5 and Fig. 8), negiknown to have a high iron concentration
(Aquino et al., 2009; Drayer et al., 1986; Hallgeamd Sourander, 1958; Schweser et al.,

2011).

A high volume fraction of the 17.8Hz signal companht also occurred in the
caudate, putamen, and substantia nigra (see Faysd 3) and may reflect iron in the ferrous
state. Trace amounts of ferritin and transferriarimbiron have been reported in the CSF
(Khalil et al., 2014, Straub et al., 2017) and reaplain the minor signal compartment (13%)
near the 17.8Hz cluster in CSF (Figs. 5 and 7,Tafie 5). The largest signal compartment
in CSF was the 3.6Hz frequency shift compartmen?B This is consistent with the finding

by Straub et al. (2017) of a bulk CSF frequencit sti3.0 Hz at 7T.



The 3.6Hz frequency shift of the signal compartmer@SF lies in close proximity to
the 4.6Hz global frequency shift cluster (Fig. Bhough CSF is not found within the
interstitial brain parenchyma (Jessen et al., 20th®)parameter values for this compartment
are suggestive of extracellular water. The magmetperties of the extracellular space have
been related to cerebrospinal fluid in previouslis (Li et al., 2015). Distributed throughout
extracellular space are dynamic quantities of det¥galts, proteins and glucose; these ionic
and macromolecular moieties could be captured dolkly as a signal compartment,
previously unobservable due to decreased sengittvgusceptibility influences at lower
field strengths (Alonso-Ortiz et al., 2017; Duyraét 2007; van Gelderen et al., 2012,
Wharton and Bowtell, 2012). A lack of structurahecence amidst these inclusions,
however, provide reason as to why this signal catmnt exhibits the lowest magnitude of

induced field change.

Previous studies that used the three-pool modertré@quency shifts for axonal
water in a range comparable to the -8.4Hz signadpaotment identified in our study (Li et
al., 2015; Sati et al., 2013). Sati et al. (20Epart axonal water frequency shifts at -6.0Hz in
the optical radiatum and -4.1Hz in the spleniunthefcorpus callosum; frequency shifts in
the same range -6.3Hz in the optic radiatum ariH£in the splenium of the corpus
callosum were observed by Li et al. (Li et al., 2DIThe orientation of axons with respect to
the scanner field influences frequency shift (8aal., 2013) Our results align with previous
studies which report negative echo-time dependequéncy differences in orientation
dependent white matter structures (Duyn et al.720Qiyn and Schenck, 2017; Lee et al.,
2012; Liu et al., 2011; Wharton and Bowtell, 2012).

Prior studies report diamagnetic susceptibilitygenies referenced to CSF for
proteins in gray and white matter (He and YablopskD09; Leutritz et al., 2013; Luo et al.,

2010; Zhong et al., 2008). In an early study by ¢lenal., (1971), rhodopsin, a G-protein-



coupled receptor (GPCR) was reported be the primamgtituent for orientation dependent
magnetic susceptibility effects in rod cells, imgmarison to phospholipid molecules. Recent
studies extend these findings by reporting diamagsasceptibility properties for proteins in
gray and white matter brain regions (referenced$&), ranging on the order of parts per
billion (ppb) in the susceptibility domain and He(Hz) in the frequency domain, at 7T (He
and Yablonskiy, 2009; Leutritz et al., 2013; Luakt 2010; Zhong et al., 2008). The -
27.5Hz cluster centroid, identified in Fig. 3 andpped in Fig. 4, may reflect the bulk
susceptibility effect arising from the microscopitangement of proteins in the brain. The
bulk diamagnetic susceptibility effects of lipidsdgproteins, however, were reported to field
effects of similar magnitude, but in the oppositection, in comparison to chemical
exchange effects (Leutritz et al., 2013). Thusugiothe bulk susceptibility effect of proteins
could potentially be observed via signal comparti@ération, image contrast may be

attenuated in the volume fraction maps due to fleraging chemical exchange effects.

Methodological considerations

Previous studies have used only a three compartmedé! (with three parameters
for each compartment) defined by white matter attarastics. Our results suggest that the
three compartment model is indeed appropriate foteamatter (see Tables 2 and 3 and
values associated with the corpus callosum). Olevalfound two or three frequency shift
compartments for any one brain region studied @ apl Hence, the use of a five
compartment model with all parameters left freel$e overfitting in all brain regions (see
Table 2 and trend in AIC values for model seleqtidimerefore, interpretation of parameter
values generated using a five compartment modél alitparameters left free is not
straightforward, as parameter values can starévwate from their expected values through
counteraction with other parameters. To comperfsataverfitting, we decided to fix

frequency shifts, the model parameters linked Withogy.



Multi-angle acquisitions were not used in this gtudadial susceptibility anisotropy
is thought to result from the orientation of glyipadls and phospholipids with respect to the
static magnetic field (He and Yablonskiy, 2009; et¢al., 2017; Li et al., 2012; Liu, 2010;
Wharton and Bowtell, 2012; Xu et al., 2017). Bdik tinisotropy of tissue and susceptibility
could explain the high fitting error observed initglmatter structures surrounding the corpus
striatum (Fig. 6). This result falls in line witmgvious reports of high structured errors in
white matter regions, arising from the effectsisgiie and susceptibility anisotropy on signal
frequency dispersion (Alonso-Ortiz et al., 201 hglwo Lee et al., 2017; van Gelderen et al.,
2012; Wharton and Bowtell, 2012; Yablonskiy and Sakskii, 2017).

Studies using GRE-MRI signal compartments havestigated the use of non-
filtered and filtered phase data (Nam et al., 20&B)l used susceptibility maps obtained
using a QSM pipeline (Nissi et al., 2015; Soodle®17; Wu et al., 2017). The latter
studies suggest that data can be improved usinQ &M pipeline by overcoming non-local
phase contrast and orientation dependence. Sird@3M pipeline in essence is a phase
filter which maps to a quantitative range, it iaysible that residual background fields are
present in the data. We used the same QSM pipatiress all echo images, hence any
leftover background effects will consistently begent in all echo images. In terms of signal
compartmentalization, this can lead to an offsehenxcompartment frequency shift (refer to
Fig. 4 for spreads about identified compartmergudency shifts). Future work should
investigate how different QSM pipelines influenhe distribution of frequency shifts for
each signal compartment.

Our investigation involved nine brains regions segtad manually in individual
participants. We opted for this approach to maxaseagmentation accuracy. As such, we
have not considered all tissue types or classdsnatiie brain. It is therefore plausible that

other frequency shift compartments in brain regiooisinvestigated could be present. Future



research could investigate the total number ofdeagy shift compartments in the human
brain with either the use of additional brain reg@@enerated using a segmentation package,
or opt to identify them using a purely data drivgproach based on voxel-wise fitting across

the entire brain.

Conclusions

Our findings suggest the presence of five glolgai compartments in the gray and
white matter regions investigated. Furthermore fitbguency shift signatures exhibited by
these signal compartments are likely to reflectaulythg differences in tissue
microstructure. Our approach may assist in ideimigfyparametric biomarkers of neurological

disorders.
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