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Abstract: 

Purpose: During the time window of diffusion weighted magnetic resonance imaging experiments (DW-MRI), water 

diffusion in tissue appears to be anomalous as a transient effect, with a mean squared displacement that is not a linear 

function of time. A number of statistical models have been proposed to describe water diffusion in tissue, and parameters 

describing anomalous as well as Gaussian diffusion have previously been related to measures of tissue microstructure 

such as mean axon radius. We analysed the relationship between white matter tissue characteristics and parameters of 

existing statistical diffusion models. 

Methods: A white matter tissue model (ActiveAx) was used to generate multiple b-value diffusion-weighted magnetic 

resonance imaging signals. The following models were evaluated to fit the diffusion signal: 1) Gaussian models - 1a) 

mono-exponential decay and 1b) bi-exponential decay; 2) Anomalous diffusion models - 2a) stretched exponential, 2b) 

continuous time random walk and 2c) space fractional Bloch-Torrey equation. We identified the best candidate model 

based on the relationship between the diffusion-derived parameters and mean axon radius and axial diffusivity, and 

applied it to the in vivo DW-MRI data acquired at 7.0 T from five healthy participants to estimate the same selected tissue 

characteristics. Differences between simulation parameters and fitted parameters were used to assess accuracy and in vivo 

findings were compared to previously reported observations.  

Results: The space fractional Bloch-Torrey model was found to be the best candidate in characterising white matter on the 

base of the ActiveAx simulated DW-MRI data. Moreover, parameters of the space fractional Bloch-Torrey model were 

sensitive to mean axon radius and axial diffusivity and exhibited low noise sensitivity based on simulations. We also 

found spatial variations in the model parameter β to reflect changes in mean axon radius across the mid-sagittal plane of 

the corpus callosum.  

Conclusion: Simulations have been used to define how the parameters of the most common statistical magnetic resonance 

imaging diffusion models relate to axon radius and diffusivity. The space fractional Bloch-Torrey equation was identified 

as the best model for the characterisation of axon radius and diffusivity. This model allows changes in mean axon radius 

and diffusivity to be inferred from spatially resolved maps of model parameters.  

Key words: Magnetic resonance imaging, anomalous diffusion, tissue microstructure, white matter, simulation, 

mathematical modelling 
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1. Introduction 

The Bloch equation describes the dynamic relationship between externally applied magnetic fields and internal sample 

relaxation times for homogeneous materials with a single spin component such as water protons (Abragam, 2011). 

However, in the presence perturbations such as chemical exchange and diffusion processes, the Bloch equation has to be 

implemented to describe properly the magnetization behavior. In nuclear magnetic resonance (NMR) spectroscopy, the 

Bloch-McConnell equations were developed to describe the NMR signal in the presence of chemical exchange (Hansen 

and Led, 2003), whereas in 1956 the Bloch-Torrey equations were introduced (Torrey, 1956), in which effects on the 

magnetic resonance imaging (MRI) signal due to diffusion are considered (Abragam, 2011). These models were based on 

classical calculus and the underlying assumption that the scale at which measurements are taken and the scale at which 

changes occur are similar. 

The last few decades have seen the development of NMR models based on fractional calculus (Bhalekar et al., 2011; De 

Santis et al., 2011; Magin et al., 2008; Palombo et al., 2012; Petráš, 2011; Qin et al., 2017a, 2017b; Xu et al., 2017a, 

2017b) in parallel with the application of fractional calculus in other fields, e.g. digital image processing (Pu et al., 2010; 

Yu et al., 2015), physics (Hilfer, 2000; Metzler and Klafter, 2000; Zaslavsky, 2002), engineering (Yu et al., 2008), finance 

(Scalas et al., 2000), and hydrology (Hosking, 1984). Such models may be better suited to problems in which the scales of 

measurement and of the underlying phenomenon are mismatched (Metzler and Klafter, 2000). This is the case in MRI, 

where microstructural influences affect the signal measured at the millimetre scale. The integer derivatives used in 

classically derived equations only act locally, whereas non-local physical behaviors can be captured through the use of 

fractional order derivatives, i.e. equations derived using fractional calculus can take into account what is happening within 

a certain vicinity governed by the fractional derivative (Kilbas et al., 2006). Essentially, the non-integer order derivative in 

a fractional model defines the ‘memory’ or ‘hereditary’ properties of the physical system. Fractional models tend to have 

a larger number of parameters as they allow additional information about the system to be represented. A number of 

studies have used fractional models to investigate tissue using MRI data (Magin et al., 2008, 2009; Petráš, 2011; Qin et al., 

2017a, 2017b; Zhou et al., 2010). 

The Bloch-Torrey equations have been used to calculate mean diffusivity, fractional anisotropy, radial diffusivity and 

axial diffusivity of biological tissue from data obtained using diffusion weighted imaging. The mono-exponential model 

solves the Bloch-Torrey equations under the assumption of isotropic diffusion (Torrey, 1956). However, it is not well-

suited to describe diffusion data of the brain, compared to more complex models that either include additional mono-

exponential terms or use a stretched exponential approximation. MRI researchers usually assume an averaging process 

over a large number of spins that, while useful at millimetre scale resolution, may not be suitable if the influence of 

smaller structures on water diffusion in the human brain is to be accounted for (Metzler and Klafter, 2000). To date it has 

been assumed that the mean-squared displacement of water diffusion remains Gaussian in the restricted diffusion signal 

compartment when the gradient field is applied as part of a diffusion-weighted magnetic resonance imaging (DW-MRI) 

scan. However, during individual measurements, diffusion takes place on a time scale over which boundary and interface 
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interactions can occur (Mori and Zhang, 2006; Price, 2009), and the Gaussian mean-squared displacement assumption 

does not hold (Sen, 2003; Upadhyaya et al., 2001). Consequently, it has been suggested that diffusion in tissue is 

anomalous by nature and that, as a corollary, diffusion in image voxels containing heterogeneous signal compartments is 

anomalous (Kimmich, 2002; Köpf et al., 1998). 

We used transient anomalous diffusion models to investigate the biological tissues, wherein for long diffusion times 

diffusion becomes Gaussian (Novikov et al., 2016). Recently, several different fractional calculus models have been 

proposed to represent anomalous diffusion in MRI experiments: 

(i) Stretched exponential (STRETCHED): an empirical extension of the mono-exponential model without an 

underlying theory wherein an additional parameter is used to shape the decay of the function (Bennett et al., 

2003). 

(ii)  Continuous time random walk (CTRW): a spatio-temporal model based on the diffusion equation (Metzler 

and Klafter, 2000), which incorporates heterogeneity of intra-voxel diffusion in time (model parameter α) and 

space (model parameter β). This model was first introduced by Palombo et al. (2011) derived using an 

effective physical approach and later by Magin et al. (2013) and Ingo et al. (2015) derived using mathematical 

approaches.  

(iii)  Space fractional Bloch-Torrey equation (FBTE): the solution to the Bloch-Torrey equation when the 

derivatives have been generalized to fractional order and considered the special case when only the spatial 

derivatives are fractional (Magin et al., 2008). 

The STRETCHED and CTRW models were originally developed to characterise anomalous diffusion in DW-MRI, and 

the resulting parametric maps were used to study differences between grey and white matter. Magin et al. (2008) proposed 

the space and time fractional Bloch-Torrey equation. The solution obtained from the FBTE model with the Stejskal-

Tanner gradient was used to fit diffusion-weighted images acquired for a normal human brain. In a follow-up study Zhou 

et al. extended their work to b-values as high as 4700 s/mm2 (Zhou et al., 2010) and applied the twice-refocused spin echo 

diffusion sequence (Gao et al., 2011). We have also used the FBTE model to probe white matter microstructure, focussing 

on the estimation of mean axon radius and volume fraction in the human corpus callosum (Yu et al., 2017). However, a 

systematic evaluation of how anomalous diffusion models relate to specific white matter characteristics has not been 

conducted to date. Such information may help in the development on new biomarkers of brain diseases.  

To evaluate the utility of diffusion models to probe white matter microstructure with MRI, we undertook a simulation 

study using an extensively used white matter tissue model, ActiveAx (Alexander et al., 2010) to generate the diffusion 

signal. ActiveAx, which incorporates axon radius, diffusivity, volume fraction and gradient directions, is the most general 

model of DW-MRI signal formation in white matter. It considers water compartments for intra- and extra cellular spaces, 

cerebrospinal fluid and stationary water and allows the effects of changes in white matter model parameters (i.e. mean 

axon radius and diffusivity) to be simulated. Here, we evaluate the sensitivity of classical and anomalous diffusion model 
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parameters to mean axon radius and diffusivity. ActiveAx was used for signal generation. Five diffusion models (MONO, 

BI, STRETCHED, CTRW and FBTE) were fitted to the diffusion signal and the relationship between individual model 

parameters and ActiveAx parameter settings was examined. We then spatially resolved parameters of the best model in 

data acquired for the corpus callosum in the in vivo MRI setting.  

2. Materials and methods 

ActiveAx was used to generate a synthetic diffusion signal with multiple b-values, upon which we based our model 

analyses. After identifying the best candidate model for characterising white matter microstructure, we collected 7 T MRI 

diffusion-weighted data from five healthy participants. Using the in vivo data from the corpus callosum of each participant, 

we sought to confirm trends predicted by the simulations.  

2.1 White matter model (ActiveAx) 

The ActiveAx model of water diffusion in white matter proposed by Alexander et al. (2010) has four signal compartments, 

denoted as Sic, Sec, Scsf and Stw, each contributing to the MRI signal of an image voxel. 

Sic: Intracellular restricted diffusion is represented by cylinders following the Gaussian phase distribution approximation. 

In the case of narrow gradient pulses and when the diffusion time is much longer than the gradient pulse duration (van 

Gelderen et al., 1994), the signal is given by: 

 ,                                                                     (1) 

where R is the representative intracellular radius following a two-parameter gamma distribution (Barazany et al., 2009), γ 

is the gyromagnetic ratio, G is the magnetic field gradient and δ is the gradient pulse duration. The meaning of long 

diffusion time should be interpreted in the context of restricted boundaries defined by R. The longer the diffusion time, the 

larger the amount of interaction with boundaries. Therefore, when R is small, shorter diffusion times can be used, and 

when R is large, longer diffusion times should be used. The weights of radius are given by a gamma function: 

,                                                                     (2) 

where wi is the weight for the cellular signal with intracellular radius Ri, k (>0) and  (>0) are two parameters of the 

gamma distribution, and  is the gamma function evaluated at k (Kilbas et al., 2006). 

Sec: Hindered diffusion in extracellular space following anisotropic Gaussian distributed displacements (Basser et al., 

1994). The signal from this compartment is given by: 

,                                                                             (3) 
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where  and d is the gradient direction d = (d1, d2, d3)
T,  and n is the 

vector representing fibre direction, D∥ is the diffusivity along n, D⊥ is the apparent diffusivity perpendicular to n, and I is 

the three dimensional identity matrix. The intrinsic diffusivity inside the cylinders for model Sic is the same as D∥. Szafer 

et al. proposed a simple tortuosity model (Szafer et al., 1995): 

,                                                                  (4) 

where v = fic/(fic+fec) and fic and fec are the volume fractions of Sic and Sec. 

 Scsf: The partial volume effect due to CSF is governed by isotropic Gaussian displacements (Barazany et al., 2009): 

,                                                                    (5) 

where Dcsf = 3 µm2/ms representing diffusion in the CSF. 

 Stw: Stationary water from subcellular structures, which is not attenuated by the diffusion weighting: 

.                                                                              (6) 

With the above four compartments, and assuming chemical exchange of the water molecule exchange does not occur 

between compartments, the total diffusion MRI signal is given by: 

                               (7) 

where f represents volume fractions,  and . 

2.2 ActiveAx parameter settings 

We performed the simulations with the following values for axial diffusivity, Di = 0.6 µm2/ms, Dii = 1.0 µm2/ms, Diii  = 

1.4 µm2/ms and Div = 1.8 µm2/ms. These were chosen to reflect previously published results of 1.61 µm2/ms (Rimkus et 

al., 2013) or 1.7 µm2/ms (Alexander et al., 2010) for in vivo human brain, 1.4 µm2/ms for in vivo rat (Barazany et al., 2009) 

or mouse (Sun et al., 2006b) brain, 1.0 µm2/ms (Assaf et al., 2004) for excised pig spinal cord tissue, 0.74 µm2/ms (Sun et 

al., 2006a) for the mouse optic nerve ex vivo, and 0.6 µm2/ms (Alexander et al., 2010) for fixed monkey brain.  

As measurement times with DW-MRI lie between 10 ms and 100 ms (Mori and Zhang, 2006), we tested three diffusion 

time regimes: SHORT (∆ = 10 ms) with δ = 5 ms, MEDIUM (∆ = 50 ms) with δ = 10 ms and LONG (∆ = 100 ms) with δ 

= 20 ms. Note, these choices of δ and ∆ have been made in view of practical limitations associated with collecting data 

using human MRI scanners. The MEDIUM and LONG diffusion time regimes satisfy both the narrow pulse (δ<< ∆) and 

long diffusion approximations (e.g. when D = 1.0 µm2/ms and maximum R = 5 µm, then in ∆ = 50ms a mean 

displacement of around 7 µm is achieved, which is sufficient for boundary restrictions to occur, an assumption for (1)). In 

the case of the SHORT diffusion time regime, assumptions used to generate (1) may not be satisfied for large R, however 

they may be satisfied for small R.   
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Volume fraction fic in the tissue model was set as fic = 0.2, based on mean volume fraction results of 0.14 and 0.26 for the 

human corpus callosum, ex vivo and in vivo respectively (Yu et al., 2017). The other three volume fractions in the tissue 

model were set as fec = 0.7, fcsf = ftw = 0.05 (Yu et al., 2017).  

Intracellular radius Ri in the intracellular compartment Sic ranged between 0.1 µm to 20 µm in steps of 0.1 µm. Parameters 

of the gamma distribution were set to k = 100 and  was varied between 0.005 and 0.05 in steps of 0.005. This allowed 

us to achieve a mean intracellular radius (R) of 0.5 µm to 5 µm in steps of 0.5 µm. 

The same b-values and gradient directions used in a previous in vivo experiment (refer to Yu et al., 2017) were used to 

generate the ActiveAx diffusion weighted MRI signal, which was then converted to trace data. The MRI signal without 

diffusion weighting, S0, was arbitrarily fixed at 1,000. We tested the performance of each model without and with the 

addition of Rician noise at SNR levels of 15 dB and 10 dB, where the 15 dB level (about 30 when expressed as signal 

over noise and not in dB; NORMAL SNR) corresponds to the SNR of routinely acquired diffusion signals in MRI, and the 

10 dB level (also 10 when expressed as signal over noise and not in dB; LOW SNR) corresponds to a low SNR regime. At 

each SNR level, simulations were repeated 1,000 times with different random Rician noise to evaluate model performance. 

2.3 Diffusion models  

Mono-exponential diffusion (MONO) model 

The MONO model is given by (Le Bihan, 2007): 

 ,                                                                                 (8) 

where S0 is the MRI signal without diffusion weighting, D is the diffusion coefficient,  is the b-

value and ∆ is the time from the beginning of the first gradient pulse to the beginning of the second gradient pulse. 

Diffusion MRI signal loss deviates from mono-exponential decay in many biological tissues, particularly at high b-values, 

for example, b > 1500 s/mm2 (Le Bihan, 2007). 

Bi-exponential diffusion (BI) model 

The BI model assumes that there are two distinct diffusion compartments within each voxel (Clark and Le Bihan, 2000): 

,                                                                      (9) 

where v is the volume fraction of the fast diffusing compartment and D1 and D2 are the diffusion coefficients for the fast 

and slow diffusion compartments. This model assumes that water exchanges slowly between the two compartments 

during the diffusion measurement time. The first term has been associated with the extracellular compartment and the 

second term with the intracellular compartment.  

θ
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Stretched exponential (STRETCHED) model 

Bennett et al. (2003) postulate that non-mono-exponential decay results from a continuum of diffusion compartments 

leading them to propose a STRETCHED model: 

,                                                                                   (10) 

where D is the distributed diffusion coefficient which is independent of b-value, and α in (0,1] is the exponent describing 

the width of the decay curve. The model was used to characterize water diffusion rates in the cortex and fitted signal 

evolution better than the bi-exponential model in 20% of voxels. 

Continuous time random walk (CTRW) model 

The CTRW model is based on a generalization of random walk theory (Metzler and Klafter, 2000). In heterogeneous 

materials characterized by tortuous and porous geometries, the motion of diffusing particles is anomalous (Capuani et al., 

2013; Palombo et al., 2011; Ingo et al., 2015; Karaman et al., 2016a; Kilbas et al., 2006), and the jump distance and jump 

waiting time are no longer constrained by a Gaussian distribution but follow asymptotic power law distributions. The 

following assumed relations could be used to study sub-diffusive processes (Capuani et al., 2013; Palombo et al., 2011): 

                                                                     
 ( ) ( )2

0S , expk t S D k tα
α= −  when ( )2 1k D tα

α� ,                                          (11)
                              

where Dα  is a generalized diffusion constant, ( )2k Gγ δ π=  and α in (0, 1). In addition, the following relations could be 

used to investigate super-diffusive processes (Capuani et al., 2013; Palombo et al., 2011): 

                                                                                       
( ) ( )2 2

0S , expk t S D k tµ µ= − ,                                                              (12) 

where 2D µ  is a generalized diffusion constant and µ in (0, 1). Furthermore, the diffusion-weighted signal attenuation in 

the CTRW model with the Stejskal-Tanner gradient can be described using the Mittag-Leffler function as (Karaman et al., 

2016a): 

,                                                       (13) 

where the dimensionless parameter α is the diffusion waiting time, which theoretically reflects the temporal heterogeneity 

faced by water molecules. Parameter β is the diffusion jump length reflecting spatial heterogeneity of the tissue. Eα is the 

single parameter Mittag-Leffler function (Kilbas et al., 2006). Dm is termed the anomalous diffusion coefficient and has 

units of µm2/ms. It is defined as where D1,2 
is the nominal diffusion coefficient with units of 

mm2/s, and α in (0, 1) and β in (0, 1). 
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Note that two different types of diffusion data have to be collected to fit (11) and (12). For the former, data should be 

obtained using a pulse field gradient sequence and ∆ has to be changed when G is fixed to be able to resolve a value for α 

in (11). For the latter, data is obtained using a pulse field gradient sequence wherein G is varied and ∆ is fixed to be able 

to fit parameter µ in (12). Modern diffusion-weighted human MRI sequences allow for changes in the b-value through 

changes in G within one acquisition, however they do not allow for multiple values of ∆ within one sequence. Our work 

focuses on models which are applicable with the acquisition of multiple b-value data within one acquisition, as this 

approach is practical and data can be acquired in a reasonable amount of time. Therefore, we opted to study the utility of 

(13), which essentially has the same form as (12), i.e. let 2
mD Dµ β=  and 2k t bµ β= , and can be applied with multiple b-

value data. 

Space Fractional Bloch-Torrey equation (FBTE)  

In this model, diffusion-weighted signal attenuation with the Stejskal-Tanner gradient is given by (Magin et al., 2008): 

,                                (14) 

where D is the diffusion coefficient, µ2(β-1) is the fractional order space constant needed to preserve units, and β is the 

spatial heterogeneity index in (0, 1). We have developed numerical approaches for solving FBTE and proved the stability 

and convergence of the methods (Song et al., 2014; Yu et al., 2012, 2013a, 2013b). Equation (14) has also been used to fit 

diffusion-weighted data acquired for a normal human brain allowing construction of D, β and µ maps (Magin et al., 2008).  

2.4 Diffusion model parameter estimation and evaluation 

Fig. 1 shows the signal attenuations at three different mean axon radii (R = 0.5 µm, 2.5 µm and 5 µm) for different 

ActiveAx axial diffusivities and three different diffusion time regimes in the absence of noise. Fig. 2 provides a schematic 

of how model parameters were estimated. For simulated diffusion signals generated using ActiveAx and different 

combinations of mean axon radius and axial diffusivity, a non-linear least squares fitting algorithm (Levenberg-Marquardt) 

in MATLAB ® was used to estimate parameters in different diffusion models. 

Figure 1: The signal attenuations at three different mean axon radii (R = 0.5 µm, 2.5 µm and 5 µm) and SHORT, 

MEDIUM and LONG diffusion times, for four different ActiveAx axial diffusivities (D//). 

Figure 2: The process involved in generating diffusion model parameters is outlined. The � symbol signifies the 

generation of fitted signal and diffusion model parameters using the diffusion and tissue models respectively. The 

flowchart shows an example using the FBTE diffusion model with mean axon radius of R = 5 µm and axial diffusivity of 

D = 1.0 µm2/ms in the tissue model. An example of the noisy signal is provided. 

2 ( 1)
0

2 1
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S b S D b

β
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β
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We used mean relative error (MRE) to evaluate how well each model fitted the simulated signal. The MRE is the mean of 

the summed absolute error divided by the magnitude of the signal, where the absolute error is the magnitude of the 

difference between the fitted and simulated signals. The corrected Akaike Information Criterion (AICc) was used to select 

the best model (Anderson et al., 1994). The AICc incorporates a correction for finite sample sizes. The linear regression 

model, Y = mX+c, was used to measure how well the diffusion coefficient (Y) in each model predicted axial diffusivity in 

the tissue model (X). Here, m is the slope of the linear regression line and c is the intercept. The coefficient of 

determination, r2 (between 0 and 1) was used to measure goodness-of-fit of the calculated linear regression model. An r2 

of 1 indicates that a perfect fit was achieved. A lager value for r2 leads to better one-to-one mapping between set and 

calculated diffusivities, and m denotes the relationship between the two. Note, m reflects how the axial diffusivity set in 

ActiveAx can be interpreted in terms of the diffusivity calculated using each of the models. We also evaluated the 

sensitivity of model parameters to changes in each of the tissue model parameters.  

We used the following criteria to determine the best model:  

A. Diffusivity - the diffusion coefficient in the model should reflect axial diffusivities set in the tissue model. In 

our study, the best linear regression model is one which has a high goodness-of-fit (r2), i.e. the axial 

diffusivity set is as directly related as possible to the measured value, and an intercept (c) close to zero, i.e. an 

axial diffusivity of zero maps to a mean diffusivity of zero. The slope m plays a lesser role as it increases or 

decreases the mapped values. 

B. Non-intersection of curves - the plots of the model parameter versus mean axon radius for different 

diffusivities should not intersect. We state the percentage of parameters for which non-intersection is the case. 

C. One-to-one mapping - the model parameter should have a one-to-one mapping (not including D as we expect 

it to be linear) to ActiveAx tissue model parameters. We state the percentage of parameters in which this is 

the case. 

D. Wide range of sensitivity to tissue microstructure parameters - the plots of the model parameter versus mean 

axon radius should be affected evenly by diffusivity across a wide range. We state the percentage of 

parameters in which this is the case (i.e. there is equidistant spacing between curves as a function of 

diffusivity).   

The noiseless simulation data were used as the benchmark in the analysis for noise sensitivity. The SNR = 15 (NORMAL 

SNR) and SNR = 10 (LOW SNR) data sets were fitted with all models and the change in model parameters with the 

addition of noise was measured. Our goal here was to identify the model which has parameters least affected by noise.   

2.5 In vivo human MRI data  

The in vivo human brain study was approved by the University of Queensland’s Human Research Ethics Committee, 

Brisbane, Australia. Written consent was provided by each participant prior to MRI scanning. Diffusion-weighted images 

were acquired in five healthy human male participants (5 males aged 33-66 years with mean age 43.6 year) on a 7 T 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 

 

whole body MRI research scanner (Siemens Healthcare, Erlangen, Germany) with a maximum gradient strength of 70 

mT/m at a slew rate of 200 mT/m/ms. Each participant underwent a 20 minute imaging session (approximately 5 minutes 

for pre-scans, 7 minutes for structure data and 8 minutes for collecting diffusion-weighted images). T1-weighted structural 

images for each participant at 0.75 mm3 isotropic resolution were acquired to be used as a reference to segment corpus 

callosum. Diffusion-weighted data were acquired using a bipolar planar diffusion imaging pulse sequence: TE/TR = 

86/5,900 ms, matrix size = 142 × 142, iPAT = 4, bandwidth = 1,136 Hz/pixel and 50 slices with an isotropic resolution of 

1.5 mm × 1.5 mm × 1.5 mm. Gradient pulse duration = 26.82 ms and separation = 41.98 ms. Eleven b-values between 0 

and 5,000 s/mm2 in steps of 500 s/mm2 were acquired. The number of gradient directions increased with b-value and set to 

maintain a consistent signal-to-noise ratio as a function of b-value, as specified in Table 1. We acquired two zero b-value 

images, and gradient strength was varied to achieve different b-values. Images were motion and eddy current corrected.  

Table 1: The number of gradient directions acquired for each b-value in in vivo study. These were chosen to increase 

signal-to-noise ratio with increase in b-value.  

b-value 
(s/mm2) 

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 

Number of 
diffusion 
directions 

3 3 6 6 9 12 15 18 21 24 

 

2.6 Segmentation of the corpus callosum  

Using MIPAV v7.1.1, we manually segmented the corpus callosum in the mid-sagittal plane in the trace image generated 

from the diffusion-weighted data. We used corresponding T1-weighted images in each participant to aid the identification 

of the boundary of the corpus callosum. Adjacent slices were checked to minimise partial volume effects from other brain 

regions. The genu, mid-body and splenium were segmented separately. 

3. Results 

3.1 Fitting of the ActiveAx signal 

Tables 2 and 3 provide the MRE and AICc for the diffusion models studied when axial diffusivity and diffusion time (∆) 

were varied in the tissue model in the absence of noise. The MONO model performed worst. The BI model fitted the 

noiseless data best, and the anomalous diffusion models (STRETCHED, CTRW and FBTE) also achieved a very good fit 

to the data.  

Table 2: The mean relative errors (%) of noiseless data fitting using the MONO, BI, STRETCHED, CTRW and FBTE 

models. We considered distinct and realistic diffusivities Di = 0.6 µm2/ms, Dii = 1.0 µm2/ms, Diii  = 1.4 µm2/ms and Div = 

1.8 µm2/ms, and three diffusion time regimes, SHORT (∆ = 10 ms) with δ = 5 ms, MEDIUM (∆ = 50 ms) with δ = 10 ms 

and LONG (∆ = 100 ms) with δ = 20 ms, in the tissue model.  
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Diffusion time Diffusivity MONO BI STRETCHED CTRW FBTE 

SHORT 

0.6 13.04 0.93 1.93 0.29 1.93 

1.0 25.73 1.48 8.46 1.91 8.46 

1.4 38.21 1.35 15.56 5.75 15.56 

1.8 47.91 1.09 20.50 9.43 20.50 

mean 31.22 1.21 11.61 4.35 11.61 

MEDIUM 

0.6 8.35 0.53 1.79 0.37 1.79 

1.0 19.85 0.58 5.94 2.00 5.94 

1.4 31.35 0.55 9.52 4.46 9.52 

1.8 40.75 0.53 11.32 6.41 11.32 

mean 25.08 0.55 7.14 3.31 7.14 

LONG 

0.6 8.79 0.48 1.94 0.42 1.94 

1.0 20.20 0.47 5.81 2.55 5.81 

1.4 30.99 0.39 8.80 5.36 8.80 

1.8 39.69 0.31 10.26 7.32 10.26 

mean 24.92   0.41 6.70 3.91 6.70 

 

Table 3: The corrected Akaike Information Criterion for the MONO, BI, STRETCHED, CTRW and FBTE models 

corresponding to Table 2.  

Diffusion time Diffusivity MONO BI STRETCHED CTRW FBTE 

SHORT 

0.6 723.00 200.61 366.16 20.83 368.33 

1.0 759.27 211.13 543.83 330.00 546.00 

1.4 802.41 148.94 614.33 463.94 616.50 

1.8 833.49 76.81 644.16 524.37 646.33 

mean 779.54 159.37 542.12 334.79 544.29 

MEDIUM 

0.6 707.66 170.47 414.86 130.35 417.03 

1.0 811.52 124.27 584.38 435.80 586.55 

1.4 871.51 64.54 646.79 546.26 648.96 

1.8 908.02 25.12 668.38 591.97 670.55 

mean 824.68 96.10 578.60 426.10 580.77 

LONG 

0.6 733.42 177.17 445.18 168.67 447.35 

1.0 838.97 121.73 609.18 475.64 611.35 

1.4 898.22 45.31 668.08 583.72 670.25 

1.8 934.06 -29.09 687.25 627.27 689.42 

mean 851.17 78.78 602.42 463.83 604.59 
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The effect of axial diffusivity on goodness-of-fit was also evaluated. Table 2 shows that fitting errors generally increased 

as a function of axial diffusivity, except for the BI model.  

3.2 Relationship between ActiveAx settings and diffusion model parameters 

Figs. 3-7 provide the results for different models for different values of mean axon radius and axial diffusivity in the tissue 

model in the absence of noise. Results for the MONO model are shown in Fig. 3, for the BI model in Fig. 4 and for the 

STRETCHED model in Fig. 5. The parameter α differentiates the STRETCHED model from the MONO model. Results 

for the CTRW and FBTE anomalous diffusion models are provided in Figs. 6 and 7. Evaluation of r2, m and c from linear 

regression analysis in Figs 3-7 indicates that the FBTE model yielded the best goodness-of-fit and reflected the value of D 

set in the tissue model. In addition, the FBTE model produced the most consistent value for D as a function of mean axon 

radius. D predicted using other models showed greater variation as a function of mean axon radius.  

Figure 3: The simulation results of MONO model for different axial diffusivity of different ∆ and δ, ∆ = 10 ms and δ = 5 

ms (column 1), ∆ = 50 ms and δ = 10 ms (column 2) and ∆ = 100 ms and δ = 20 ms (column 3) in the tissue model in the 

absence of noise. The unit of diffusivity D is µm2/ms, and the unit of mean axon radius is µm and r2 represents the 

association between the axial diffusivity set in ActiveAx and the diffusivity estimated using the model.  

Figure 4: The simulation results of BI model for different axial diffusivity of different ∆ and δ, ∆ = 10 ms and δ = 5 ms 

(column 1), ∆ = 50 ms and δ = 10 ms (column 2) and ∆ = 100 ms and δ = 20 ms (column 3) in the tissue model in the 

absence of noise. The units of diffusivities D1 and D2 are µm2/ms, and the unit of mean axon radius is µm and r2 

represents the association between the axial diffusivity set in ActiveAx and the diffusivity estimated using the model. V 

represents the volume fraction of the compartment at diffusivity D1. Here, we only report regression results based on D1, 

since D2 produced worst results.  

Figure 5: The simulation results of STRETCHED model for different axial diffusivity of different ∆ and δ, ∆ = 10 ms and 

δ = 5 ms (column 1), ∆ = 50 ms and δ = 10 ms (column 2) and ∆ = 100 ms and δ = 20 ms (column 3) in the tissue model 

in the absence of noise. The unit of diffusivity D is µm2/ms, and the unit of mean axon radius is µm and r2 represents the 

association between the axial diffusivity set in ActiveAx and the diffusivity estimated using the model. 

Figure 6: The simulation results of CTRW model for different axial diffusivity of different ∆ and δ, ∆ = 10 ms and δ = 5 

ms (column 1), ∆ = 50 ms and δ = 10 ms (column 2) and ∆ = 100 ms and δ = 20 ms (column 3) in the tissue model in the 

absence of noise. The unit of diffusivity Dm is µm2/ms, and the unit of mean axon radius is µm and r2 represents the 

association between the axial diffusivity set in ActiveAx and the diffusivity estimated using the model. 

Figure 7: The simulation results of FBTE model for different axial diffusivity of different ∆ and δ, ∆ = 10 ms and δ = 5 

ms (column 1), ∆ = 50 ms and δ = 10 ms (column 2) and ∆ = 100 ms and δ = 20 ms (column 3) in the tissue model in the 

absence of noise. The unit of diffusivity D is µm2/ms, and the unit of mean axon radius is µm and r2 represents the 

association between the axial diffusivity set in ActiveAx and the diffusivity estimated using the model. 
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Figs. 8 and 9 summarise the results of the sensitivity analysis for NORMAL and LOW SNRs levels of Rician noise.  

represents the difference (%) between parameter estimates for noisy versus noiseless data. The dashed line in Fig. 8 

represents a 1% level of error and in Fig. 9 it corresponds to 2% error. The BI model is more sensitive to noise than the 

other models. The MONO model is appears least sensitive to noise, closely followed by the STRETCHED and FBTE 

models.  

Figure 8: The results of the sensitivity analysis when SNR = 15 dB (corresponding to a SNR = 30 computed in the 

standard way). Shown are the results of all models considered across four distinct axial diffusivities (Di to Div) and three 

diffusion time regimes (SHORT, MEDIUM and LONG). The error bars correspond to one standard deviation from the 

mean computed based on repetitions of simulations. On the y-axis  represents the error (%) by which the parameter 

estimates varied with respect to the noiseless parameter estimate. For the purpose of interpretation we have included a 

dashed line corresponding to the 1% error level. 

Figure 9: The results of the sensitivity analysis when SNR = 10 dB (corresponding to a SNR = 10 computed in the 

standard way). Shown are the results of all models considered across four distinct axial diffusivities (Di to Div) and three 

diffusion time regimes (SHORT, MEDIUM and LONG). The error bars correspond to one standard deviation from the 

mean computed based on repetitions of simulations. On the y-axis  represents the error (%) by which the parameter 

estimates varied with respect to the noiseless parameter estimate. For the purpose of interpretation we have included a 

dashed line corresponding to the 2% error level. 

3.3 Assessment of diffusion model performance  

Parameters of the anomalous diffusion models were sensitive to changes in mean axon radius and axial diffusivity (Table 

4). Of the five models considered, the FBTE model was most sensitive to changes in ActiveAx tissue parameters. Note, 

the SHORT diffusion time regime results should be interpreted carefully, since δ and ∆ may not satisfy ActiveAx 

assumptions when mean axon radii become large.  

Table 4: Summary of model performance based on the ability to provide information about ActiveAx tissue parameters 

using criteria A-D. The numbers of model parameters are in parentheses next to the model name. The results are 

calculated for all axon radii. The ranking value in criterion A means how well the diffusion coefficient in the model 

captures axial diffusivities set in ActiveAx. Here, a rank of 1 corresponds to the best fit. The percentages in criteria B-D 

mean the percentage of model parameters which meet the criteria of: (B) non-intersecting curves, (C) one-to-one mapping, 

and (D) wide ranging sensitivity to tissue microstructure characteristics. Note, we did not use µ in the FBTE model in this 

classification as it is only a unit preserving parameter. The best performing model for each criterion has been highlighted. 

Light grey to the model which perform better in each criterion in each diffusion time regime, and darker grey to the best 

overall model when multiple models performed equally well.  

ε

ε

ε

            Criterion 

 

Short diffusion time 

∆ = 10 ms, δ = 5 ms 

Medium diffusion time 

∆ = 50 ms, δ = 10 ms 

Long diffusion time 

∆ = 100 ms, δ = 20 ms 
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3.4 In vivo results 

Fig. 10 provides the corpus callosum results for the FBTE model parameters evaluated from the in vivo MRI data. The top 

three plots show how D, β and µ from the FBTE model behave as a function of mean axon radius when ActiveAx is used 

to simulate the signals based on the in vivo gradient pulse duration and diffusion times. These plots are comparable to 

parameter trends in Fig. 7. The mean squared errors between calculated diffusivity D and axial diffusivities (Di = 0.6 

µm2/ms, Dii = 1.0 µm2/ms, Diii  = 1.4 µm2/ms and Div = 1.8 µm2/ms) set in ActiveAx are 0.0038%, 0.06%, 0.68% and 

1.00%, respectively, and the corresponding maximum relative errors are 1.33%, 4.80%, 11.86% and 9.94%. 

The rest of Fig. 10 shows the spatially resolved maps of D, β and µ in the corpus callosum for the five participants. All 

five participants (P1 to P5) have very similar diffusion coefficients (P1: D = 1.00 ± 0.03 µm2/ms; P2: D = 1.03 ± 0.05 

µm2/ms; P3: D = 1.01 ± 0.03 µm2/ms; P4: D = 1.02 ± 0.04 µm2/ms; P5: D = 1.00 ± 0.02 µm2/ms), none of which differed 

significantly (p > 0.05). The β values in the corpus callosum for five participants were 0.64 ± 0.08 (P1), 0.54 ± 0.09 (P2), 

0.63 ± 0.10 (P3), 0.58 ± 0.05 (P4) and 0.62 ± 0.07 (P5). Based on the simulated trend in β as a function of mean axon 

radius, and by noting that Dii is mostly 1.0 µm2/ms, the spatial variation in mean axon radius can directly be inferred from 

the trend in β.  

Figure 10: FBTE model results obtained using the in vivo MRI data in the corpus callosum of five participants (P1 to P5). 

The top three plots illustrate simulation results based on diffusion times from the in vivo experiment (∆ = 41.98 ms and δ 

= 26.82 ms). Mean axon radius is measured in µm and r2 represents the association between the axial diffusivity set in 

ActiveAx and the diffusivity estimated using the model. The rest of the figure shows spatially resolved maps of D (in 

µm2/ms), β and µ. Locations (i)-(iii) correspond to the genu, mid-body and splenium regions of the corpus callosum.  

Table 4 shows that the STRETECHED model, apart from criteria A, performs as well as FBTE. Fig. 11 provides the in 

vivo findings using the STRETCHED model. The mean squared errors between calculated diffusivity D and axial 

diffusivities (Di = 0.6 µm2/ms, Dii = 1.0 µm2/ms, Diii  = 1.4 µm2/ms and Div = 1.8 µm2/ms) set in ActiveAx were 4.5%, 

17.98%, 42.15% and 75.34%, and the corresponding maximum relative errors were 52.67%, 58.10%, 61.00% and 

61.89%. Fig. 11 also shows the spatially resolved maps of D and α in the corpus callosum for the five participants. All 

five participants (P1 to P5) have very different diffusion coefficients with large standard deviations (P1: D = 0.67 ± 0.22 

    

Model 

A  

rank 

B 

 % 

C 

% 

D 

% 

A 

rank 

B 

% 

C 

% 

D 

% 

A 

rank 

 B  

 % 

C 

% 

D 

% 

MONO (1) 4 100 - 0 5 100 - 0 5 100 - 0 

BI (3) 5 0 0 0 3 0 0 0 3 67 50 0 

STRETCHED (2) 3 50 0  50 4 100 100 100 4 100 100 100 

CTRW (3) 2 33 0 33 2 33 0 33 2 33 0 33 

FBTE (3) 1 50 0  50 1 100 100 100 1 100 100 100 
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µm2/ms; P2: D = 0.97 ± 0.35 µm2/ms; P3: D = 0.93 ± 0.39µm2/ms; P4: D = 0.70 ± 0.23 µm2/ms; P5: D = 0.78 ± 0.20 

µm2/ms). The α values in the corpus callosum for five participants were 0.64 ± 0.08 (P1), 0.54 ± 0.09 (P2), 0.65 ± 0.12 

(P3), 0.58 ± 0.05 (P4) and 0.62 ± 0.07 (P5), that correspond to the β values from Fig. 10 with the exception of P3. 

Figure 11: STRETCHED model results obtained using the in vivo MRI data in the corpus callosum of five participants 

(P1 to P5). The top two plots illustrate simulation results based on diffusion times from the in vivo experiment (∆ = 41.98 

ms and δ = 26.82 ms). Mean axon radius is measured in µm and r2 represents the association between the axial diffusivity 

set in ActiveAx and the diffusivity estimated using the model. The rest of the figure shows spatially resolved maps of D 

(in µm2/ms) and α. Locations (i)-(iii) correspond to the genu, mid-body and splenium regions of the corpus callosum.  

4. Discussion  

We investigated how diffusion model parameters vary as a function of mean axon radius to define the best model for 

mean axon radius estimation. Whilst we found the bi-exponential model fitted noiseless data best, the model performed 

worst in the presence of noise. All of the anomalous diffusion models (STRETCHED, CTRW and FBTE) were less noise 

sensitive than the bi-exponential model (Figs. 8 and 9). Using a number model selection criteria (summarised in Table 4), 

we demonstrated that the FBTE model parameters were able to reflect changes in mean axon radius. We were also able to 

resolve variations in model parameters in the corpus callosum in five healthy participants, suggesting that changes in 

mean axon radius can be inferred from model parameters. To our knowledge, this is the first systematic evaluation of the 

utility of anomalous diffusion models in evaluating changes in white matter microstructure. Whilst we investigated the 

relationship between various anomalous diffusion model parameters and ActiveAx tissue model settings, and ranked 

models in terms of our criteria, different models may provide different types of information in other applications. For 

example, anomalous diffusion has been proposed for the study of sub-diffusion, cellular order and disorder (Palombo et al. 

2011, 2013). It is likely that different anomalous diffusion models have distinct pros and cons depending on the 

application studied.   

4.1 In vivo findings 

In vivo MRI findings showed that the diffusion coefficient D in the FBTE model did not differ greatly between different 

parts of the corpus callosum in the mid-sagittal plane or between participants (Fig. 10). The mapped value of D was also 

able to capture the axial diffusivity set in ActiveAx and did not change greatly with changes in mean axon radius. In vivo 

findings resembled the high-low-high distribution in D along the corpus callosum demonstrated previously (Rimkus et al., 

2013). Notably, based on our simulation findings, D estimated using the FBTE model reflects axial diffusivity set in 

ActiveAx. Deff, derived from axial diffusivity (D∥) and apparent diffusivity (D⊥) in ActiveAx, can be converted to a mean 

diffusivity by averaging the diagonal entries. Thus, axial and apparent diffusivities can be converted to a mean diffusivity. 

For a value of D =  1.00 µm2/ms, which is representative of our in vivo findings, the mean diffusivity calculated from Deff  

is 0.85 µm2/ms. This value is in very close agreement with the mean diffusivity of 0.81 µm2/ms in the corpus callosum 
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reported by Rimkus et al. (2013), and 0.86 µm2/ms found by Ibrahim et al. (2011). We found β from the FBTE model 

increased monotonically with mean axon radius, which means that for a fixed value of D, the mean axon radius can 

directly be inferred from β. It has previously been shown that the mean axon radius varies in the corpus callosum and 

exhibits a low-high-low trend going from the anterior (genu indicated by (i) in Fig. 10) to the middle (mid-body indicated 

as (ii) in Fig. 10) and posterior (splenium indicated by (iii) in Fig. 10) callosum (Caminiti et al., 2013; Yu et al., 2017). 

The expected low-high-low pattern is also present in maps of β. Additionally, Fig. 11 illustrates that D in the 

STRETCHED model did differ significantly between different parts of the corpus callosum and between participants, 

meaning that the STRETCHED model may not suitably capture information on diffusivity. 

While other studies have examined fibre microstructure using diffusion-weighted images, none have assessed the 

appropriateness of the model used to inferring tissue properties. The CHARMED model (restricted and hindered diffusion 

signal compartments) was used to characterise anisotropic water diffusion in the pig spinal cord (Assaf et al., 2004). The 

model later evolved into the AxCaliber model, in which the fixed axon diameter distribution used in the CHARMED 

model was replaced by an axon diameter distribution computed from histology results (Assaf et al., 2008). Barazany et al. 

(2009) went on to incorporate an isotropic diffusion compartment into AxCaliber, which was used to account for partial 

volume effects from CSF. They applied this three-compartment (hindered, restricted and isotropic diffusion) model to 

estimate the axon diameter distribution in the rat corpus callosum. Recently, NODDI, a three-compartment model 

incorporating intra-cellular, extra-cellular and CSF diffusion signal compartments was used to estimate the microstructural 

complexity of dendrites and axons (Zhang et al., 2012). The NODDI model was able to provide in vivo estimates of 

neurite density and orientation dispersion. Our approach is unique in being a systematic evaluation of the models, 

allowing us to identify the model (i.e. FBTE) best suited for characterising white matter. Our heuristic could be applied to 

future studies investigating the role of model selection for other quantitative diffusion imaging applications.  

4.2 Relationship between ActiveAx settings and diffusion model parameters  

The STRETCHED, CTRW and FBTE models were found to be more sensitive to ActiveAx tissue parameters than the 

MONO and BI models based on our criteria, summarised in Table 4. Individual model parameters of each diffusion model 

cannot be compared directly and have been assigned different meanings in the literature based on how the equations were 

derived. Parameter α in the STRETCHED model and β in the FBTE model were similar for the three diffusion time 

regimes studied (compare Figs. 5 and 7). Parameters α and β in the CTRW model and µ in the FBTE model were affected 

differently by changes in mean axon radius and axial diffusivity (compare Figs. 6 and 7). These findings imply that the 

anomalous diffusion equations share some characteristics but that different parameters also capture different information 

about tissue parameters. Hence, it would be interesting to study how parameters of the different models behave under 

different microstructural situations.  

4.3 Existing findings using anomalous diffusion models 
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Our findings showed that parameter α in the STRETCHED model is sensitive to changes in tissue microstructure, as has 

been shown previously (Bai et al., 2016). Parameter α was suggested to correlate with tissue heterogeneity where a lower 

value indicates a more heterogeneous microstructure (Bennett et al., 2003).  

In a short diffusion time study using a fixed rat brain, the information in maps of α and β from the CTRW model were 

stated to reflect tissue porosity and tortuosity (Magin et al., 2013). Specifically, a smaller α corresponded to lower 

porosity and a smaller β corresponded to lower tortuosity. We found α to be smaller for smaller mean axon radii, 

corresponding to denser packing and lower porosity. Parameter β showed a tendency to decrease for smaller mean axon 

radii, which also confirms the findings in fixed rat brain relating to tissue tortuosity. In addition, we found parameter β 

was more sensitive to changes in axial diffusivity than parameter α. Karaman et al. (2016a) has also found that parameter 

β from the CTRW model can be used to classify tissue.  

Our findings show that parameter β in the FBTE model correlates well with tissue parameters, as previously observed in a 

study of healthy brains (Zhou et al., 2010). Parameter β was suggested to correlate with tissue heterogeneity with a smaller 

β reflecting greater tissue heterogeneity. Others have also found the parameters of the FBTE model to correlate with tissue 

heterogeneity (Sui et al., 2015, 2016). Our approach of connecting anomalous diffusion parameters from the FBTE model 

to tissue microstructure may provide insight into neurodegenerative diseases and disorders wherein tissue microstructural 

reorganization occurs. It may also aid the development of biomarkers for the purpose of disease detection and longitudinal 

monitoring of changes in tissue. 

4.4 Other fractional diffusion models 

Our work focused on investigating models which can be applied to data readily acquired using human MRI scanners. 

Other anomalous diffusion models have been developed to date, including time and space-time fractional forms. The 

different types of models are applicable to different types of data. Notably, time and space-time fractional models 

generally require data in which both the diffusion time and gradient strength change. To obtain multiple diffusion time 

data, the sequence has to be repeated with a new diffusion time setting. This leads to repeated diffusion weighted image 

acquisitions, which in turn lead to prolonged scan times. In fact, these scan times become implausible for routine use on 

scanners available today. Nevertheless, it would be interesting to investigate the use of time and space-time fractional 

models in a study similar to this one.  

Magin et al. (2008) developed three models, the space fractional model used herein, and a time and a space-time 

fractional model. The latter two have specific shortcomings, as they cannot be used with the short gradient pulse 

approximation and thereby theoretical limitations have been identified (Lin 2015). Recently, a modified-Bloch equation 

for anomalous diffusion (space-time fractional) was proposed by Lin (2017a, 2017b) in view of limitations associated 

with the short gradient pulse approximation. In addition, based on the space-time fractional diffusion equation used by 

Magin et al. (2008), Lin (2016) developed the effective phase diffusion equation method and the non-Gaussian 
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approximation method. Both temporal and spatial fractional parameters were determined in the presence of small signal 

attenuation (Lin 2016), which could be useful in the future studies which involve multiple diffusion time data.  

Eliazar and Shlesinger (2013) originally introduced the general theory of fractional motion (FM) in relation to 

macroscopic effects due to microscopic level details. Fan and Gao (2015) extended the FM theory to DW-MRI to be able 

to describe signal influences in terms of the statistical properties of water diffusion in tissue. Their FM model parameter 

maps showed exquisite soft tissue contrast. However, the FM model requires data wherein both the gradient strength and 

diffusion time change (i.e. fractional in time). Later, the FM model was shown to have similar characteristics to those of 

the CTRW model, wherein gradient strength and not diffusion time was changed to change the b-value (Karaman et al., 

2016b). 

4.5 Limitations 

A recent work by Caporale et al. (2017) highlighted that local magnetic susceptibility differences, which influence MRI 

signal formation, likely affect model parameters. This was concluded in view of studying white matter influences on 

model parameters in (12). They established that parameter 2µ  in (12) mapped in the human brain, which is named =2γ µ
 

in Caporale et al. (2017), depends on local magnetic susceptibility differences between myelin and extracellular space 

(Caporale et al., 2017). We did not account for magnetic susceptibility influences in our models. Therefore, we might 

have underestimated the sensitivity of anomalous diffusion CTRW parameters to white matter tissue parameters. 

In this study, we did not acquired diffusion-weighted low b-value data, such as in the range 0 to 500 s/mm2, which may 

additionally improve the quantification of anomalous diffusion model parameters. The tissue model we used assumed no 

water molecule exchange occurs between compartments, which may not be the case in general in the brain. Additionally, 

the tissue model only considered axonal structures and assumed a single axon orientation within the voxel. Crossing, 

bending or fanning fibres in white matter could be considered in a future study.  

5. Conclusions 

We evaluated the sensitivity of anomalous diffusion models to white matter tissue parameters using ActiveAx, a white 

matter tissue model proposed by Alexander et al. (2010). Our work demonstrates that the choice of the diffusion model 

has a significant impact on the ability to infer information about white matter microstructure from diffusion weighted MRI 

data. Our results suggest that classical models do not perform as well as anomalous diffusion models in the presence of 

noise. In particular, the space fractional Bloch-Torrey model appears to be the best candidate to axonal properties. 
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