2 research outputs found
Orbital floor repair using patient specific osteoinductive implant made by stereolithography
The orbital floor (OF) is an anatomical location in the craniomaxillofacial (CMF) region known to be highly variable in shape and size. When fractured, implants commonly consisting of titanium meshes are customized by plying and crude hand-shaping. Nevertheless, more precise customized synthetic grafts are needed to meticulously reconstruct the patients’ OF anatomy with better fidelity. As alternative to titanium mesh implants dedicated to OF repair, we propose a flexible patient-specific implant (PSI) made by stereolithography (SLA), offering a high degree of control over its geometry and architecture. The PSI is made of biodegradable poly(trimethylene carbonate) (PTMC) loaded with 40 wt % of hydroxyapatite (called Osteo-PTMC). In this work, we developed a complete work-flow for the additive manufacturing of PSIs to be used to repair the fractured OF, which is clinically relevant for individualized medicine. This work-flow consists of (i) the surgical planning, (ii) the design of virtual PSIs and (iii) their fabrication by SLA, (iv) the monitoring and (v) the biological evaluation in a preclinical large-animal model. We have found that once implanted, titanium meshes resulted in fibrous tissue encapsulation, whereas Osteo-PMTC resulted in rapid neovascularization and bone morphogenesis, both ectopically and in the OF region, and without the need of additional biotherapeutics such as bone morphogenic proteins. Our study supports the hypothesis that the composite osteoinductive Osteo-PTMC brings advantages compared to standard titanium mesh, by stimulating bone neoformation in the OF defects. PSIs made of Osteo-PTMC represent a significant advancement for patients whereby the anatomical characteristics of the OF defect restrict the utilization of traditional hand-shaped titanium mesh
Long-Term Soil Structure Observatory for Monitoring Post-Compaction Evolution of Soil Structure
The projected intensification of agriculture to meet food targets of a rapidly growing world population are likely to accentuate already acute problems of soil compaction and deteriorating soil structure in many regions of the world.
The key role of soil structure for soil functions, the sensitivity of soil structure to agronomic management practices, and the lack of reliable observations and metrics for soil structure recovery rates after compaction motivated the establishment of a long-term Soil Structure Observatory (SSO) at the Agroscope research institute in Zürich, Switzerland. The primary objective of the SSO is to provide long-term observation data on soil structure evolution after disturbance by compaction, enabling quantification of compaction recovery rates and times. The SSO was designed to provide information on recovery of compacted soil under different post-compaction soil management regimes, including natural recovery of bare and vegetated soil as well as recovery with and without soil tillage. This study focused on the design of the SSO and the characterization of the pre- and post-compaction state of the field. We deployed a monitoring network for continuous observation of soil state variables related to hydrologic and biophysical functions (soil water content, matric potential, temperature, soil air O2 and CO2 concentrations, O2 diffusion rates, and redox states) as well as periodic sampling and in situ measurements of infiltration, mechanical impedance, soil porosity, gas and water transport properties, crop yields, earthworm populations,
and plot-scale geophysical measurements. Besides enabling quantification of recovery rates of compacted soil, we expect that data provided by the SSO will help improve our general understanding of soil structure dynamics