2 research outputs found

    Virome assembly and annotation: A surprise in the Namib Desert

    Get PDF
    Sequencing, assembly, and annotation of environmental virome samples is challenging. Methodological biases and differences in species abundance result in fragmentary read coverage; sequence reconstruction is further complicated by the mosaic nature of viral genomes. In this paper, we focus on biocomputational aspects of virome analysis, emphasizing latent pitfalls in sequence annotation. Using simulated viromes that mimic environmental data challenges we assessed the performance of five assemblers (CLC-Workbench, IDBA-UD, SPAdes, RayMeta, ABySS). Individual analyses of relevant scaffold length fractions revealed shortcomings of some programs in reconstruction of viral genomes with excessive read coverage (IDBA-UD, RayMeta), and in accurate assembly of scaffolds ?50 kb (SPAdes, RayMeta, ABySS). The CLC-Workbench assembler performed best in terms of genome recovery (including highly covered genomes) and correct reconstruction of large scaffolds; and was used to assemble a virome from a copper rich site in the Namib Desert. We found that scaffold network analysis and cluster-specific read reassembly improved reconstruction of sequences with excessive read coverage, and that strict data filtering for non-viral sequences prior to downstream analyses was essential. In this study we describe novel viral genomes identified in the Namib Desert copper site virome. Taxonomic affiliations of diverse proteins in the dataset and phylogenetic analyses of circovirus-like proteins indicated links to the marine habitat. Considering additional evidence from this dataset we hypothesize that viruses may have been carried from the Atlantic Ocean into the Namib Desert by fog and wind, highlighting the impact of the extended environment on an investigated niche in metagenome studies.IS

    Not Available

    No full text
    Not Availablepost green revolution agriculture is based on generous application of fertilizers and high-yielding genotypes that are suited for such high input regimes. Cereals, like maize (Zea mays L.) are capable of utilizing less than 20% of the applied inorganic phosphate (Pi) - a non-renewable fertilizer resource. A greater understanding of the molecular mechanisms underlying the acquisition, transportation and utilization of Pi may lead to engineering genotypes with high phosphorus use efficiency. In this study, we carried out functional domain similarity analysis, promoter analysis and comparative transcriptional expression profiling of 12 selected Pi responsive genes in the Pi stress tolerant maize inbred line HKI-163 under sufficient and deficient Pi conditions. Pi starvation led to significant increase in root length; marked proliferation of root hairs and lesser number of crown roots. Eleven genes were significantly up or down regulated in Pi deficient condition. The putative acid phosphatase, ZmACP5 expression was up regulated by 162.81 and 74.40 fold in root and leaf tissues, respectively. The RNase, ZmRNS1 showed 115 fold up regulation in roots under Pi deprivation. Among the two putative high affinity Pi transporters ZmPht1;4 was found specific to root, whereas ZmPht2 was found to be up regulated in both root and leaf tissues. The genes involved in Pi homeostasis pathway (ZmSIZ1, SPX1 and Pho2) were up regulated in root and leaf. In light of the expression profiling of selected regulatory genes, an updated model of transcriptional regulation under Pi starvation in maize has been presented.Not Availabl
    corecore