57 research outputs found

    Lipid-soluble cigarette smoking particles induce expression of inflammatory and extracellular-matrix-related genes in rat cerebral arteries

    Get PDF
    Petter Vikman, Cang-Bao Xu, Lars EdvinssonDepartment of Clinical Sciences, Experimental Vascular Research, Lund, SwedenAims: Cigarette smoking is one of the strongest risk factors for stroke. However, the underlying molecular mechanisms that smoke leads to the pathogenesis of stroke are incompletely understood.Methods: Dimethyl sulfoxide (DMSO)-soluble (lipid-soluble) cigarette smoking particles (DSP) were extracted from cigarette smoke (0.8 mg nicotine per cigarette; Marlboro®). Rat cerebral arteries were isolated and organ cultured in the presence of DSP (0.2 μl/ml, equivalent to the plasma level in smokers) for 24 h. The expression of matrix metalloproteinase 9 and 13 (MMP9 and MMP13), angiotensin receptor 1 and 2 (AT1 and AT2), interleukin 6 and inducible nitric oxide synthase (iNOS) were investigated at mRNA level by real-time PCR and/or at protein level by immunohistochemistry. In addition, the activity of three mitogen-activated protein kinases (p38, ERK 1/2 and SAPK/JNK) and their downstream transcription factors (ATF-2, Elk-1 and c-Jun) were examined.Results: We observed that compared with control (DMSO-treated cerebral arteries), the cerebral arteries treated by DSP exhibited enhanced expression of MMP13 and AT1 receptors, but not of AT2 receptors, at both mRNA and protein levels, suggesting that a transcriptional mechanism is most likely involved in the DSP effects. This is further supported by the findings that DSP induced phosphorylation of p38 mitogen-activated protein kinases inflammatory signal protein in parallel with activation of its downstream transcription factor ATF-2 and Elk-1. However, ERK 1/2 and SAPK/JNK activities were markedly expressed in the control (organ culture per se with DMSO), and DSP failed to further enhance the activation of ERK 1/2 and SAPK/JNK in the cerebral arteries.Conclusions: DSP induces cerebral vessel inflammation with activation of p38 MAPK inflammatory signal and the downstream transcriptional factors (ATF-2 and Elk-1) in parallel with enhanced extracellular-matrix-related gene transcription and increased AT1 receptor expression in the cerebral arteries, which are key events in stroke pathogenesis.Keywords: cigarette smoking, vascular inflammation, signal transduction, extracellular matrix, MMP, strok

    Influence of Familial Renal Glycosuria Due to Mutations in the SLC5A2 Gene on Changes in Glucose Tolerance over Time

    Get PDF
    Familial renal glycosuria is an inherited disorder resulting in glucose excretion in the urine despite normal blood glucose concentrations. It is most commonly due to mutations in the SLC5A2 gene coding for the glucose transporter SGLT2 in the proximal tubule. Several drugs have been introduced as means to lower glucose in patients with type 2 diabetes targeting SGLT2 resulting in renal glycosuria, but no studies have addressed the potential effects of decreased renal glucose reabsorption and chronic glycosuria on the prevention of glucose intolerance. Here we present data on a large pedigree with renal glycosuria due to two mutations (c.300-303+2del and p.A343V) in the SLC5A2 gene. The mutations, which in vitro affected glucose transport in a cell line model, and the ensuing glycosuria were not associated with better glycemic control during a follow-up period of more than 10 years. One individual, who was compound heterozygous for mutations in the SLC5A2 gene suffered from severe urogenital candida infections and postprandial hypoglycemia. In conclusion, in this family with familial glycosuria we did not find any evidence that chronic loss of glucose in the urine would protect from deterioration of the glucose tolerance over time.Peer reviewe

    Novel subgroups of adult-onset diabetes and their association with outcomes : a data-driven cluster analysis of six variables

    Get PDF
    Background Diabetes is presently classified into two main forms, type 1 and type 2 diabetes, but type 2 diabetes in particular is highly heterogeneous. A refined classification could provide a powerful tool to individualise treatment regimens and identify individuals with increased risk of complications at diagnosis. Methods We did data-driven cluster analysis (k-means and hierarchical clustering) in patients with newly diagnosed diabetes (n=8980) from the Swedish All New Diabetics in Scania cohort. Clusters were based on six variables (glutamate decarboxylase antibodies, age at diagnosis, BMI, HbA(1c), and homoeostatic model assessment 2 estimates of beta-cell function and insulin resistance), and were related to prospective data from patient records on development of complications and prescription of medication. Replication was done in three independent cohorts: the Scania Diabetes Registry (n=1466), All New Diabetics in Uppsala (n=844), and Diabetes Registry Vaasa (n=3485). Cox regression and logistic regression were used to compare time to medication, time to reaching the treatment goal, and risk of diabetic complications and genetic associations. Findings We identified five replicable clusters of patients with diabetes, which had significantly different patient characteristics and risk of diabetic complications. In particular, individuals in cluster 3 (most resistant to insulin) had significantly higher risk of diabetic kidney disease than individuals in clusters 4 and 5, but had been prescribed similar diabetes treatment. Cluster 2 (insulin deficient) had the highest risk of retinopathy. In support of the clustering, genetic associations in the clusters differed from those seen in traditional type 2 diabetes. Interpretation We stratified patients into five subgroups with differing disease progression and risk of diabetic complications. This new substratification might eventually help to tailor and target early treatment to patients who would benefit most, thereby representing a first step towards precision medicine in diabetes.Peer reviewe

    TCF7L2 is a master regulator of insulin production and processing

    Get PDF
    Genome-wide association studies have revealed >60 loci associated with type 2 diabetes (T2D), but the underlying causal variants and functional mechanisms remain largely elusive. Although variants in TCF7L2 confer the strongest risk of T2D among common variants by presumed effects on islet function, the molecular mechanisms are not yet well understood. Using RNA-sequencing, we have identified a TCF7L2-regulated transcriptional network responsible for its effect on insulin secretion in rodent and human pancreatic islets. ISL1 is a primary target of TCF7L2 and regulates proinsulin production and processing via MAFA, PDX1, NKX6.1, PCSK1, PCSK2 and SLC30A8, thereby providing evidence for a coordinated regulation of insulin production and processing. The risk T-allele of rs7903146 was associated with increased TCF7L2 expression, and decreased insulin content and secretion. Using gene expression profiles of 66 human pancreatic islets donors', we also show that the identified TCF7L2-ISL1 transcriptional network is regulated in a genotype-dependent manner. Taken together, these results demonstrate that not only synthesis of proinsulin is regulated by TCF7L2 but also processing and possibly clearance of proinsulin and insulin. These multiple targets in key pathways may explain why TCF7L2 has emerged as the gene showing one of the strongest associations with T2

    Impaired hepatic lipid synthesis from polyunsaturated fatty acids in TM6SF2 E167K variant carriers with NAFLD

    Get PDF
    Background: Carriers of the transmembrane 6 superfamily member 2 E167K gene variant (TM6SF2(EK/KK)) have decreased expression of the TM6SF2 gene and increased risk of NAFLD and NASH. Unlike common 'obese/metabolic' NAFLD, these subjects lack hypertriglyceridemia and have lower risk of cardiovascular disease. In animals, phosphatidylcholine (PC) deficiency results in a similar phenotype. PCs surround the core of VLDL consisting of triglycerides (TGs) and cholesteryl-esters (CEs). We determined the effect of the TM6SF2 E167K on these lipids in the human liver and serum and on hepatic gene expression and studied the effect of TM6SF2 knockdown on hepatocyte handling of these lipids. Methods: Liver biopsies were taken from subjects characterized with respect to the TM6SF2 genotype, serum and liver lipidome, gene expression and histology. In vitro, after TM6SF2 knockdown in HuH-7 cells, we compared incorporation of different fatty acids into TGs, CEs, and PCs. Results: The TM6SF2(EK/KK) and TM6SF2EE groups had similar age, gender, BMI and HOMA-IR. Liver TGs and CEs were higher and liver PCs lower in the TM6SF2(EK/KK) than the TM6SF2EE group (p Conclusions: Hepatic lipid synthesis from PUFAs is impaired and could contribute to deficiency in PCs and increased intrahepatic TG in TM6SF2 E167K variant carriers. (C) 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.Peer reviewe

    Case Nortura/Norilia.Improving the utilisation of co-streams in poultry processing

    Get PDF
    Industrialised chicken production is far from organic agriculture prinicples. Still of interest is a more sustainable utilisation of by-products, e.g. hydrolysation of feathers for proteins, or extraction of food grade oil from chicken bones. Such approaches were studied in the bioeconomy-project "CYCLE" (2013-2017)

    Inhibition of PKC activity blocks the increase of ET(B )receptor expression in cerebral arteries

    Get PDF
    BACKGROUND: Previous studies have shown that there is a time-dependent upregulation of contractile endothelin B (ET(B)) receptors in middle cerebral arteries (MCA) after organ culture. This upregulation is dependent on mitogen-activated protein kinases and possibly protein kinase C (PKC). The aim of this study was to examine the effect of PKC inhibitors with different profiles on the upregulation of contractile ET(B )receptors in rat MCA. Artery segments were incubated for 24 hours at 37°C. To investigate involvement of PKC, inhibitors were added to the medium before incubation. The contractile endothelin-mediated responses were measured and real-time PCR was used to detect endothelin receptor mRNA levels. Furthermore, immunohistochemistry was used to demonstrate the ET(B )receptor protein distribution in the MCA and Western blot to measure which of the PKC subtypes that were affected by the inhibitors. RESULTS: The PKC inhibitors bisindolylmaleimide I, Ro-32-0432 and PKC inhibitor 20–28 attenuated the ET(B )receptor mediated contractions. Furthermore, Ro-32-0432 and bisindolylmaleimide I decreased ET(B )receptor mRNA levels while PKC inhibitor 20–28 reduced the amount of receptor protein on smooth muscle cells. PKC inhibitor 20–28 also decreased the protein levels of the five PKC subtypes studied (α, βI, γ, δ and ε). CONCLUSION: The results show that PKC inhibitors are able to decrease the ET(B )receptor contraction and expression in MCA smooth muscle cells following organ culture. The PKC inhibitor 20–28 affects the protein levels, while Ro-32-0432 and bisindolylmaleimide I affect the mRNA levels, suggesting differences in activity profile. Since ET(B )receptor upregulation is seen in cerebral ischemia, the results of the present study provide a way to interfere with the vascular involvement in cerebral ischemia

    Protein kinase C inhibition attenuates vascular ET(B )receptor upregulation and decreases brain damage after cerebral ischemia in rat

    Get PDF
    BACKGROUND: Protein kinase C (PKC) is known to be involved in the pathophysiology of experimental cerebral ischemia. We have previously shown that after transient middle cerebral artery occlusion, there is an upregulation of endothelin receptors in the ipsilateral middle cerebral artery. The present study aimed to examine the effect of the PKC inhibitor Ro-32-0432 on endothelin receptor upregulation, infarct volume and neurology outcome after middle cerebral artery occlusion in rat. RESULTS: At 24 hours after transient middle cerebral artery occlusion (MCAO), the contractile endothelin B receptor mediated response and the endothelin B receptor protein expression were upregulated in the ipsilateral but not the contralateral middle cerebral artery. In Ro-32-0432 treated rats, the upregulated endothelin receptor response was attenuated. Furthermore, Ro-32-0432 treatment decreased the ischemic brain damage significantly and improved neurological scores. Immunohistochemistry showed fainter staining of endothelin B receptor protein in the smooth muscle cells of the ipsilateral middle cerebral artery of Ro-32-0432 treated rats compared to control. CONCLUSION: The results suggest that treatment with Ro-32-0432 in ischemic stroke decreases the ischemic infarction area, neurological symptoms and associated endothelin B receptor upregulation. This provides a new perspective on possible mechanisms of actions of PKC inhibition in cerebral ischemia

    Smoking particles enhance endothelin A and endothelin B receptor-mediated contractions by enhancing translation in rat bronchi

    Get PDF
    BACKGROUND: Smoking is known to cause chronic inflammatory changes in the bronchi and to contribute to airway hyper-reactivity, such as in bronchial asthma. To study the effect of smoking on the endothelin system in rat airways, bronchial segments were exposed to DMSO-soluble smoking particles (DSP) from cigarette smoke, to nicotine and to DMSO, respectively. METHODS: Isolated rat bronchial segments were cultured for 24 hours in the presence or absence of DSP, nicotine or DMSO alone. Contractile responses to sarafotoxin 6c (a selective agonist for ET(B )receptors) and endothelin-1 (an ET(A )and ET(B )receptor agonist) were studied by use of a sensitive myograph. Before ET-1 was introduced, the ET(B )receptors were desensitized by use of S6c. The remaining contractility observed was considered to be the result of selective activation of the ET(A )receptors. ET(A )and ET(B )receptor mRNA expression was analyzed using real-time quantitative PCR. The location and concentration of ET(A )and ET(B )receptors were studied by means of immunohistochemistry together with confocal microscopy after overnight incubation with selective antibodies. RESULTS: After being cultured together with DSP for 24 hours the bronchial segments showed an increased contractility mediated by ET(A )and ET(B )receptors, whereas culturing them together with nicotine did not affect their contractility. The up-regulation of their contractility was blunted by cycloheximide treatment, a translational inhibitor. No significant change in the expression of ET(A )and ET(B )receptor mRNA through exposure to DMSO or to nicotine exposure alone occurred, although immunohistochemistry revealed a clear increase in ET(A )and ET(B )receptors in the smooth muscle after incubation in the presence of DSP. Taken as a whole, this is seen as the presence of a translation mechanism. CONCLUSION: The increased contractility of rat bronchi when exposed to DSP appears to be due to a translation mechanism

    Signal Transduction and Gene Regulation in Cerebral Arteries Following Ischemia

    No full text
    The thesis consideres the molecular events that take place in the cerebral arteries following a stroke. The degree and temporal course of reperfusion following a stroke is pivotal for the survival of the neuronal tissue in the penumbra. Previous investigations have revealed upregulation of contractile receptors, a putative factor in the blood flow reduction following stroke that can could augment cell death. The major aim of the study is achieve a better understanding of the changes that occur in the cerebral arteries following a stroke and of the resulting activation of the signal pathways involved, along with changes in gene expression and protein regulation to further the knowledge of how arteries participate in the events that take place following a stroke. The more specific goals have been the following: * To investigate the gene regulation in cerebral arteries following SAH, aimed at determining what the important processes involved in the increase in contraction are. * Investigation of MAPK activation and its relation to gene expression. * Comparison of the ischemic models MCAO and SAH with organ culture of cerebral arteries to determine similarities and to validate the use of organ culture as a model. * Investigation of gene expression and protein regulation in human MCA following thromboembolic stroke so as validate previous findings in connection with experimental rat models. * Molecular characterization of smoke induced changes in cerebral arteries
    corecore