86 research outputs found

    All That is Gold Does Not Glitter\u27 - Environmental Applications of Gold Enabled Plasmonics

    Get PDF
    Clean air and clean water are the cornerstones of environmental engineering and environmental science. To assure the quality of these matrices, we currently rely upon a broad range of monitoring techniques - many of which are outdated, unreliable, or excessively expensive. Recent advances in both nanotechnology and biotechnology, however, are poised to provide novel and previously unattainable alternatives that have the potential to be more sensitive as well as more cost-effective than many existing methods. In this presentation, we will present work conducted to develop gold enabled plasmonic platforms that facilitate detection of inorganic, organic, biologic, and nanoparticulate contaminants. As will be shown, both light spectroscopy and Raman spectroscopy can be used to detect and quantify environmental contaminants in a range of different media

    Surface enhanced Raman scattering (SERS) based microfluidics for single cell analysis

    Get PDF
    The integration of surface enhanced Raman scattering (SERS) with droplet microfluidics has the potential to improve our understanding of cellular systems. Herein, we present the first application of SERS droplet microfluidics for single cell analysis. A microfluidic device was used to encapsulate single prostate cancer cells and wheat germ agglutin (WGA) functionalized SERS nanoprobes in water-in-oil droplets that were subsequently locked into a storage droplet array for spectroscopic investigation. The stationary droplets enabled the rapid identification of SERS regions of interest in live cancer cells by allowing collection of “fast” coarse maps over an area of several mm2 followed by “slower” detailed interrogation of the identified hotspots. We demonstrate SERS at cellular resolution via a proof-of-concept assay that detects glycan expression on the surface of prostate cancer cells using WGA modified metallic nanoparticles. The data illustrates the potential of SERS optofluidic systems for high-throughput cell screening and illustrates a previously unobserved high degree of cell-to-cell variability in the size and number of glycan islands

    Aerosol Microdroplets Exhibit a Stable pH Gradient

    Get PDF
    Suspended aqueous aerosol droplets (\u3c50 ÎŒm) are microreactors for many important atmospheric reactions. In droplets and other aquatic environments, pH is arguably the key parameter dictating chemical and biological processes. The nature of the droplet air/ water interface has the potential to significantly alter droplet pH relative to bulk water. Historically, it has been challenging to measure the pH of individual droplets because of their inaccessibility to conventional pH probes. In this study, we scanned droplets containing 4-mercaptobenzoic acid–functionalized gold nanoparticle pH nanoprobes by 2D and 3D laser confocal Raman microscopy. Using surface-enhanced Raman scattering, we acquired the pH distribution inside approximately 20-ÎŒm-diameter phosphate-buffered aerosol droplets and found that the pH in the core of a droplet is higher than that of bulk solution by up to 3.6 pH units. This finding suggests the accumulation of protons at the air/water interface and is consistent with recent thermodynamic model results. The existence of this pH shift was corroborated by the observation that a catalytic reaction that occurs only under basic conditions (i.e., dimerization of 4-aminothiophenol to produce dimercaptoazobenzene) occurs within the high pH core of a droplet, but not in bulk solution. Our nanoparticle probe enables pH quantification through the cross-section of an aerosol droplet, revealing a spatial gradient that has implications for acid-base–catalyzed atmospheric chemistry

    An Environmental Science and Engineering Framework for Combating Antimicrobial Resistance

    Get PDF
    On June 20, 2017, members of the environmental engineering and science (EES) community convened at the Association of Environmental Engineering and Science Professors (AEESP) Biennial Conference for a workshop on antimicrobial resistance. With over 80 registered participants, discussion groups focused on the following topics: risk assessment, monitoring, wastewater treatment, agricultural systems, and synergies. In this study, we summarize the consensus among the workshop participants regarding the role of the EES community in understanding and mitigating the spread of antibiotic resistance via environmental pathways. Environmental scientists and engineers offer a unique and interdisciplinary perspective and expertise needed for engaging with other disciplines such as medicine, agriculture, and public health to effectively address important knowledge gaps with respect to the linkages between human activities, impacts to the environment, and human health risks. Recommendations that propose priorities for research within the EES community, as well as areas where interdisciplinary perspectives are needed, are highlighted. In particular, risk modeling and assessment, monitoring, and mass balance modeling can aid in the identification of “hot spots” for antibiotic resistance evolution and dissemination, and can help identify effective targets for mitigation. Such information will be essential for the development of an informed and effective policy aimed at preserving and protecting the efficacy of antibiotics for future generations

    Mechanistic theory predicts the effects of temperature and humidity on inactivation of SARS-CoV-2 and other enveloped viruses

    Get PDF
    Ambient temperature and humidity strongly affect inactivation rates of enveloped viruses, but a mechanistic, quantitative theory of these effects has been elusive. We measure the stability of SARS-CoV-2 on an inert surface at nine temperature and humidity conditions and develop a mechanistic model to explain and predict how temperature and humidity alter virus inactivation. We find SARS-CoV-2 survives longest at low temperatures and extreme relative humidities (RH); median estimated virus half-life is >24 hr at 10°C and 40% RH, but ∌1.5 hr at 27°C and 65% RH. Our mechanistic model uses fundamental chemistry to explain why inactivation rate increases with increased temperature and shows a U-shaped dependence on RH. The model accurately predicts existing measurements of five different human coronaviruses, suggesting that shared mechanisms may affect stability for many viruses. The results indicate scenarios of high transmission risk, point to mitigation strategies, and advance the mechanistic study of virus transmission

    ARGem: a new metagenomics pipeline for antibiotic resistance genes: metadata, analysis, and visualization

    Get PDF
    Antibiotic resistance is of crucial interest to both human and animal medicine. It has been recognized that increased environmental monitoring of antibiotic resistance is needed. Metagenomic DNA sequencing is becoming an attractive method to profile antibiotic resistance genes (ARGs), including a special focus on pathogens. A number of computational pipelines are available and under development to support environmental ARG monitoring; the pipeline we present here is promising for general adoption for the purpose of harmonized global monitoring. Specifically, ARGem is a user-friendly pipeline that provides full-service analysis, from the initial DNA short reads to the final visualization of results. The capture of extensive metadata is also facilitated to support comparability across projects and broader monitoring goals. The ARGem pipeline offers efficient analysis of a modest number of samples along with affordable computational components, though the throughput could be increased through cloud resources, based on the user’s configuration. The pipeline components were carefully assessed and selected to satisfy tradeoffs, balancing efficiency and flexibility. It was essential to provide a step to perform short read assembly in a reasonable time frame to ensure accurate annotation of identified ARGs. Comprehensive ARG and mobile genetic element databases are included in ARGem for annotation support. ARGem further includes an expandable set of analysis tools that include statistical and network analysis and supports various useful visualization techniques, including Cytoscape visualization of co-occurrence and correlation networks. The performance and flexibility of the ARGem pipeline is demonstrated with analysis of aquatic metagenomes. The pipeline is freely available at https://github.com/xlxlxlx/ARGem

    Standardizing data reporting in the research community to enhance the utility of open data for SARS-CoV-2 wastewater surveillance

    Get PDF
    SARS-CoV-2 RNA detection in wastewater is being rapidly developed and adopted as a public health monitoring tool worldwide. With wastewater surveillance programs being implemented across many different scales and by many different stakeholders, it is critical that data collected and shared are accompanied by an appropriate minimal amount of meta-information to enable meaningful interpretation and use of this new information source and intercomparison across datasets. While some databases are being developed for specific surveillance programs locally, regionally, nationally, and internationally, common globally-adopted data standards have not yet been established within the research community. Establishing such standards will require national and international consensus on what meta-information should accompany SARS-CoV-2 wastewater measurements. To establish a recommendation on minimum information to accompany reporting of SARS-CoV-2 occurrence in wastewater for the research community, the United States National Science Foundation (NSF) Research Coordination Network on Wastewater Surveillance for SARS-CoV-2 hosted a workshop in February 2021 with participants from academia, government agencies, private companies, wastewater utilities, public health laboratories, and research institutes. This report presents the primary two outcomes of the workshop: (i) a recommendation on the set of minimum meta-information that is needed to confidently interpret wastewater SARS-CoV-2 data, and (ii) insights from workshop discussions on how to improve standardization of data reporting

    Nanomaterial enabled sensors for environmental contaminants

    No full text
    Abstract The need and desire to understand the environment, especially the quality of one’s local water and air, has continued to expand with the emergence of the digital age. The bottleneck in understanding the environment has switched from being able to store all of the data collected to collecting enough data on a broad range of contaminants of environmental concern. Nanomaterial enabled sensors represent a suite of technologies developed over the last 15 years for the highly specific and sensitive detection of environmental contaminants. With the promise of facile, low cost, field-deployable technology, the ability to quantitatively understand nature in a systematic way will soon be a reality. In this review, we first introduce nanosensor design before exploring the application of nanosensors for the detection of three classes of environmental contaminants: pesticides, heavy metals, and pathogens
    • 

    corecore