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Antibiotic resistance is of crucial interest to both human and animal medicine. It
has been recognized that increased environmental monitoring of antibiotic
resistance is needed. Metagenomic DNA sequencing is becoming an attractive
method to profile antibiotic resistance genes (ARGs), including a special focus on
pathogens. A number of computational pipelines are available and under
development to support environmental ARG monitoring; the pipeline we
present here is promising for general adoption for the purpose of harmonized
global monitoring. Specifically, ARGem is a user-friendly pipeline that provides
full-service analysis, from the initial DNA short reads to the final visualization of
results. The capture of extensive metadata is also facilitated to support
comparability across projects and broader monitoring goals. The ARGem
pipeline offers efficient analysis of a modest number of samples along with
affordable computational components, though the throughput could be
increased through cloud resources, based on the user’s configuration. The
pipeline components were carefully assessed and selected to satisfy tradeoffs,
balancing efficiency and flexibility. It was essential to provide a step to perform
short read assembly in a reasonable time frame to ensure accurate annotation of
identified ARGs. Comprehensive ARG and mobile genetic element databases are
included in ARGem for annotation support. ARGem further includes an
expandable set of analysis tools that include statistical and network analysis
and supports various useful visualization techniques, including Cytoscape
visualization of co-occurrence and correlation networks. The performance and
flexibility of the ARGem pipeline is demonstrated with analysis of aquatic
metagenomes. The pipeline is freely available at https://github.com/xlxlxlx/
ARGem.
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1 Introduction

Antibiotic resistance poses a significant risk to human health.
Antibiotic resistance genes (ARGs) encode resistance to antibiotics
and can be carried in the bacterial chromosome or on mobile genetic
elements (MGEs). ARGs are of greatest concern to human health,
especially when they are found in known or emerging pathogens
(Vikesland et al., 2019). The need for monitoring of ARGs in the
environment, including water resources and agricultural production
systems, is increasingly being recognized. Such environments play
an important ecological role in propagation of ARGs. The ARGs can
emanate from anthropogenic sources or from natural environments
themselves, serving as facilitators of horizontal gene transfer (HGT)
(Maiden, 1998; Barlow, 2009; Aminov, 2011; Lerminiaux and
Cameron, 2019). HGT can contribute to expansion of the general
reservoir of ARGs carried across environmental microbiomes,
influencing human and animal pathogens, inducing new
mechanisms of antimicrobial resistance. Metagenomics, the study
of DNA extracted across the microbial community representing the
environment of interest, has arisen as a promising approach to
profiling ARGs and other microbial entities of concern, such as
human pathogens (Koonin, 2018; Chiu and Miller, 2019).
Environmental metagenomics has shown promise for tracking
shifts in ARG and pathogen markers in the environment with
time and in response to various disturbances and inputs
(Berglund et al., 2019; de Abreu et al., 2021). Thus,
metagenomics is being proposed as an efficient means of
comprehensive surveillance of ARGs and pathogens across the
One Health spectrum (Shen et al., 2021).

Contemporary environmental metagenomic data sets typically
consist of a number of short read sequence files, typically generated
by Illumina sequencing producing files ranging in size up to 100 Gbp
(Gigabase pairs) (Davis et al., 2023), each representing either a
Processing such datasets requires significant computational analysis.
This typically needs to be organized in a bioinformatics pipeline that
consists of selected software tools, which are mutually connected
custom scripts. These scripts are usually written in programming
languages such as Python 3 (Siegwald et al., 2017; Breitwieser et al.,
2019), and composing such scripts to construct a bioinformatics
pipeline can be challenging for non-expert users.

Manymetagenomic analysis pipelines exist with much variation.
However, the goal of a typical pipeline is to identify microbial taxa
and genes of interest in a subset of samples, and to estimate their
abundances. Further analysis of the annotation is often left to
specific tools selected by the researcher. A pipeline may assemble
the reads into contigs to allow identification of complete or nearly
complete genes and to improve resolution for annotation. A classic
metagenomics pipeline is the MG-RAST server, which is designed to
process numerous samples on high-performance computing clusters
(Meyer et al., 2008). A number of more recent pipelines (which we
briefly review here) are available for a researcher to install and
execute on their own computational resources (Uritskiy et al., 2018;
Clarke et al., 2019; Dong and Strous, 2019; Tamames and Puente-
Sanchez, 2019; Eng et al., 2020; Grieb et al., 2020). MetaWRAP
employs binning and reassembly steps to obtain improved
annotation (Uritskiy et al., 2018). SqueezeMeta concentrates on
simultaneously assembling multiple metagenome data sets along
with binning to enhance the identification of low-abundance taxa

and genes (Tamames and Puente-Sanchez, 2019). MetaErg provides
graphical summaries of the annotated contigs to support visual
confirmation of contig quality (Dong and Strous, 2019). Sunbeam
emphasizes a flexible pipeline framework that, in typical use, does
not require the researcher to provide extensive run-time parameters
(Clarke et al., 2019). Grieb et al. (Grieb et al., 2020) developed a
pipeline explicitly tailored for research on marine plankton. Finally,
MetaLAFFA is a flexible metagenomic analysis pipeline targeted to
distributed computing environments (Eng et al., 2020).

A common limitation among the pipelines is a lack of integrated
tools for additional analysis and visualization beyond basic
annotation. Moreover, these pipelines do not provide flexible
input, which results in a disincentive to data sharing and greatly
detracts from the overall utility of the data. Metadata, which is the
data describing properties (e.g., DNA extraction method and sample
environment) of the sample, is nowadays commonly provided along
with the sample sequences. Lack of extensive provision and sharing
of metadata diminishes the ability to perform analyses that harness
the power of metadata to support predictive modeling of
environmental metagenomes. This deficiency in metadata sharing
also detracts from encouraging reporting of comparable data, which
is a critical need for the broader goal of large-scale environmental
ARG monitoring. While researchers might recognize the
importance of the extensive metadata that they collect for each
sample, the actual types of metadata captured can vary greatly across
research projects (Goncalves and Musen, 2019; Martinez-Romero
et al., 2019). As one effort to remedy the situation, the National
Center for Biotechnology Information (NCBI) (Sayers et al., 2019)
collects a set of required metadata for each sample uploaded to
resources, such as BioProject and BioSample (Federhen et al., 2014;
Martinez-Romero et al., 2019), while still allowing for flexible
column addition and following the minimum information about
any (x) sequence (MIxS) guidelines (Yilmaz et al., 2011). However,
comparing data across different projects remains a challenging task
when using NCBI metadata.

Another notable framework, not limited to metagenomics
analysis, is Galaxy (Jalili et al., 2020). Galaxy is a platform
developed for flexible workflows that can be customized for
bioinformatics tasks, with an open-source framework available
for customization. Several pipelines have been developed using
the Galaxy framework for various metagenomics tasks (Pilalis
et al., 2012; Yang et al., 2016; Batut et al., 2018). Among them,
only a few have aimed to develop an integrated pipeline that
performs tasks beyond annotation. Additionally, most of these
pipelines were not specifically designed for ARG detection tasks
or for addressing the issue of customizing metadata in different
environments.

Towards addressing the aforementioned issues, we present
ARGem pipeline. This locally deployable pipeline supports ARG
annotation as well as the capture of a flexible set of metadata, which
will encourage comprehensive data sharing and be ultimately
accessible to support more sophisticated future analysis after
annotation is complete. To achieve this purpose, users are
provided with a simple spreadsheet with required and
recommended metadata fields and standardized units. Users
complete the spreadsheet and submit it as input to create an
ARGem project, in which the data are stored in a relational
database that can be further cross-analyzed.
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Key analytical tools and capabilities that are commonly applied
for metagenomic-based ARG monitoring have been built into the
ARGem pipeline, extending data analysis beyond the annotation of
taxa and ARGs to include statistical analysis and ARG co-occurrence
and correlation networks. The resulting outputs can culminate in a
wide range of custom visualizations to support comparisons across
samples and projects, as well as tables summarizing the results in
tabulated format to support additional analysis. As detailed in
Section Assembly and Annotation, we have extensively examined
the bioinformatics components of the ARGem pipeline. In
particular, we prioritized comprehensive databases for ARGs and
MGEs annotation. One comparable pipeline is our own MetaStorm
server (Arango-Argoty et al., 2016), which is only available as a Web
service to execute on the computational resources of an individual
research lab, which allows extendability of ARGem with new
capabilities. PathoFact (de Nies et al., 2021) is a resource
specialized in the prediction of ARGs and pathogens and make
uses of our DeepARG resource (Arango-Argoty et al., 2018).
However, PathoFact does not have the flexibility to incorporate
or update reference databases other than the provided options,
which were released prior to 2021. Also, PathoFact does not
handle the assembly step and requires pre-assembled contigs as
the input, prioritizing post-assembly analysis rather than a full
sequence-to-analysis pipeline. PathoFact depends on Miniconda
to guaranteee compatibility with specific versions of Snakemake
and Python, making it convenient for users to install and use at the
time of release, but may later lead to obsolescence compared to
software with such dependency.

Overall, ARGem is a locally deployable pipeline which addresses
many of the needs identified above through a user-friendly, full-
service pipeline for ARG analysis of environmental metagenomic
data with enhanced metadata capture and normalization to facilitate
comparison within and across studies. In the Method section, we
describe in detail the tools and methods employed in the ARGem
pipeline. In Section Results, we describe the overall workflow of the
pipeline and the general mechanism for each step, as well as
demonstrate the value of our ARGem pipeline with a number of
example runs utilizing metagenomic samples relevant to aquatic
environments. Sections Discussion and Conclusion emphasize the
strengths of our current implementation and identify potential paths
for future extensions.

2 Methods

The ARGem pipeline integrates a number of tools implemented
as individual modules that can be used within the pipeline or
independently. Detailed descriptions are included for task
scheduling, the Luigi workflow builder (Luigi Development
Team, 2020), data retrieval, reference databases for annotations,
assembly and annotation, analysis, visualization and the relational
database.

2.1 Task scheduling

The ARGem pipeline consists of a sequence of tasks and
employs a task scheduling mechanism that handles the

distributed resources on multiple servers. This scheduling
strategy is adequate for the computational resources of a typical
lab. By maintaining a straightforward and concise task scheduling
system, we intend to keep the system at lab scale and make it
convenient for most researchers to use.

Specifically, we use the batch command in Linux. The batch
command implements internal queues to manage and execute tasks
in a manner that adapts execution demand to system capabilities,
maintaining a ceiling on system load. If the job exits with an error,
batch is used to catch the exception, and ARGem sends an email
notification to the user email address stored in the database
associated with the task. If the job completes successfully, the
system also sends out an email notifying the user of the
completion of the task.

2.2 Luigi workflow builder

Some of the tasks employed by ARGem are particularly time-
demanding, such as sequence assembly and annotation. Such tasks
can be especially demanding for analysis of environmental
metagenomes, which tend to be particularly complex. In such
cases, it is useful to incorporate a built-in workflow to handle the
execution of tasks and deal with computational issues typically
associated with long-running processes, such as error handling
and status visualization. For ARGem, the Luigi package for
Python (Luigi Development Team, 2020) is used by the back end
to define tasks and chain them together to construct a workflow for
the pipeline, as well as managing the scheduling of tasks, handling
errors, and visualizing the status of the pipeline.

Luigi manages multiple tasks in the workflow by assigning them
to different classes and drivers. Each class is designed to execute a
particular task, such as short reads annotation or co-occurrence
network analysis. Once the Luigi task classes are defined, they are
aligned with each other in a workflow by indicating the
dependencies between pairs of modules. Tasks without direct or
indirect dependency on each other can be run in parallel, depending
on how much resources the scheduler allocate for them. Figure 1A
shows a generic Luigi workflow. In ARGem, all the Luigi modules
are aligned linearly with a potential change on paralleling short read
annotation with contig assembly and annotation, if needed.

2.3 Data retrieval from public websites

ARGem provides automatic raw sequence data retrieval from
the public NCBI database (Sayers et al., 2022) through SRA toolkit
(SRA Toolkit Development Team, 2022). The ARGem input
spreadsheet contains an SRA number field in which the user can
indicate the SRA or SRR number of the sample. The sample numbers
then allow the SRA Toolkit to retrieve raw sequence data samples in
*.fasta or *.fastq format. For the uploaded SRA numbers via
the input spreadsheet, ARGem checks whether the SRA project
numbers are accessible a suitable format through a pre-download.
Invalid SRA numbers or those associated with incorrect formats are
logged to a designated log file. Upon completion or interruption of
the pipeline, these SRA numbers are then reported to the user in an
email notification.
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FIGURE 1
(A) A sample Luigi workflow. The workflow can consist of both linear and parallel tasks. A task that depends on a previous one will not be executed
until all the dependencies have been completed. Tasks without direct or indirect dependency on each other can be executed in parallel if resource
permits. (B) ARGem workflow. The ARGem pipeline automatically processes the raw sequences after a list of SRA accession numbers are submitted
through a metadata spreadsheet. After preprocessing, the raw sequences go through two different branches: 1) short reads matching to generate
normalized ARG counts, and 2) contig annotations against ARG andMGE reference databases. The results generated can then be passed to the integrated
analysis and visualization tools. The default normalization methods built in the pipeline are 16S rRNA, TPM, and FPKM. 1) Blue rectangles indicate data and
2) red rounded rectangles indicate processing steps.

TABLE 1 An evaluation of assemblers on our server. In total one reclaimed waste water sample (water sample 1), one final treated biosolids sample (water sample
2), and two raw sewage and treated wastewater samples (water sample 3 and 4), were used to evaluate the performance of assemblers on our server. Note that the
samples used here are different from those presented in Section Results. The size column shows the sizes of sample sequence files in gigabytes. Length indicates
the sequence length of each sample sequence data. Time shows the total hours required to assemble the metagenomic data generated from a given sample.
Percent of CPU, maximum resident set size and major page faults shows metrices reported by time command during the process.

Sample Size (GB) Length Assembler Time (hr) Percent of CPU (%) Maximum resident set size (KB) Major page faults

Water1 5.91 108 MetaSPAdes 4 : 05: 43 1,147 46328252 31

Water1 5.91 108 IDBA-UD 2 : 47: 37 3130 32219196 1

Water1 5.91 108 MegaHIT 0 : 33: 47 3118 5369920 4

Water2 1.52 92 IDBA-UD 0 : 21: 20 2999 8617580 1

Water2 1.52 92 MegaHIT 0 : 05: 37 3109 1399316 1

Water2 1.52 92 MetaSPAdes 0 : 37: 23 1090 11654044 1

Water3 4.57 202 MegaHIT 0 : 43: 20 3402 4125444 0

Water3 4.57 202 MetaSPAdes 2 : 25: 05 1114 37923596 1

Water4 5.91 202 MegaHIT 0 : 54: 59 3,398 5014884 3

Water4 5.91 202 MetaSPAdes 3 : 13: 46 1,116 42655912 25
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Once the accession and format verification is complete, ARGem
begins the SRA sample retrieval process where the raw sequence files
are downloaded individually for each SRA number. The retrieval of
each sample is initialized with a query to the accession-size of the
SRA project numbers through the SRA Toolkit to ensure that the
size of a single sample is lower than the hard limit, which is set by
default to be 70 gigabytes. In the case where the SRA sample is above
the size limit, an error can be raised and logged accordingly by
ARGem pipeline. Once the size verification is complete, the SRA
sample is prefetched via the SRA Toolkit in *.sra format and then
converted into *.fastq format. For paired end samples, the file
format conversion process is split to convert each SRA sample into a
paired files for assembly.

After all the raw sequence files are retrieved from NCBI website
(Sayers et al., 2022), ARGem will initiate a post-download validation
on the retrieved raw *.fastq sequence data files to validate their
data integrity. Upon completion, annotation and assembly tasks for
the valid samples will be scheduled according to the Luigi workflow.

2.4 ARG and MGE databases

The pipeline design of ARGem offers easy and flexible updates
and interchanges for databases. Once a new ARG or MGE database
is converted into a fasta file and a proper format for the annotation
tool, ARGem redirects assembly and annotation tasks into the new
databases. Default ARG and MGE databases were selected based on
how widely they are used for metagenomic analysis, with a
preference for databases that are frequently updated.

To annotate the raw sequences and assembly results into ARGs,
ARGem integrates the current Comprehensive Antibiotic Resistance
Database (CARD) (Alcock et al., 2020) as the default reference
database, while the users have the option to use other databases at
their choice.

ARGem utilizes three databases for MGEs: Mobile-OG (Brown
et al., 2022), NanoARG (Arango-Argoty et al., 2019), and Parnanen
et al. (Parnanen et al., 2018). The Mobile-OG database is a recently

published database aiming to mitigate the high positive rates
originated from accessory genes that are temporarily associated
with the MGEs. The goal of the database is to provide high-
quality annotations and annotations derived exclusively through
bioinformatic evidence. NanoARG is a database that has been
particularly insightful in identifyimg ARGs in sequences of
varying lengths and a range of sequencing error rates. NanoARG
is an integration of two data sets, NCBI and integron-integrase
(I-VIP) database (Zhang et al., 2018). In the NanoARG database,
MGE sequences have been extracted from NCBI using keywords
such as “transposase,” “transposon,” “integrase,” “integron,” and
“recombinase”, following the method described in (Forsberg et al.,
2014). The I-VIP database focuses on comprehensive information
on class 1 integrons. After extracting the MGE sequences from
NCBI, the integrases of class 1 integrons have then been extracted
from I-VIP database and added into the NanoARG database
(Arango-Argoty et al., 2019). The Parnanen et al. MGE database
(Parnanen et al., 2018) was created with a focus on mother-infant
MGE sharing, providing a unique perspective and addition to the
existing MGE research. This database was constructed by fetching
coding sequences for genes that were annotated as IS*, ISCR*, intI1,
int2, istA*, istB*, qacEdelta, tniA*, tniB*, tnpA* or
Tn916 transposon open reading frames (ORFs). The genes were
either sourced from the NCBI nucleotide database, or from the
PlasmidFinder database (Carattoli and Hasman, 2020).

2.5 Assembly and annotation

The sequence data used in this study are available from the
NCBI database (Sayers et al., 2022) and retrieved with the SRA
Toolkit (SRA Toolkit Development Team, 2022) using the SRA
accession numbers listed in the metadata table.

To select a suitable assembler for our short read metagenomic
data, we carefully evaluated the performance of a set of assemblers
on our server and on targeted data sets. The pre-selected set of
assemblers was chosen based on evaluations in previous studies

FIGURE 2
The database schema of ARGem. ARGem supports custom metadata attributes and various data processing parameters. Mandatory information
including the SRA number and user information are reflected in database tables as NOT NULL fields. Optional fields are not required and can be set to a
default value.
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(Vollmers et al., 2017; Ayling et al., 2020; Zhang et al., 2020). Table 1
and Supplementary Table S1 summarizes the results of different
analyses of these samples.

We evaluate the assemblers on the samples as follows: one
reclaimed waste water sample (water sample 1), one final treated
biosolids sample (water sample 2), and two raw sewage and treated
wastewater samples (water sample 3 and 4) for the results depicted
in Table 1. Note that the samples used here are different from those
presented in Section Results. The first two samples were produced by
our group, and the latter two samples were published in previous
work (Lekunberri et al., 2018). For the first two wastewater samples
we tested three assemblers: MetaSPAdes (Nurk et al., 2017), IDBA-

UD (Peng et al., 2012) and MegaHIT (Li et al., 2015). While the
annotation results of IDBA-UD and MegaHIT were similar,
MegaHit showed a better performance in terms of time and
memory usage in our test scenario. For the other two wastewater
samples, we compared MetaSPAdes and MegaHIT. Overall, we
found that on our data sets, MegaHIT generated reasonable
results in a relatively short amount of time. Therefore we provide
MegaHIT as the default assembler.

DIAMOND (Buchfink et al., 2015; 2021) was incorporated as
the primary annotation tool across ARGem, both for short reads
matching and contig annotation. DIAMOND is a open-source
sensitive protein aligner used widely in the bioinformatics field.

FIGURE 3
Co-occurrence graph generated using Cytoscape with threshold of 3 of samples SRR2088951, SRR2088982, SRR2088983, SRR2089011,
SRR5571001, SRR5997542, SRR5997549, SRR9141345, SRR9141349, SRR9141356, SRR9141357, SRR9141362, SRR9141365, SRR9141380, and
SRR9141383. MGEs are represented as square node and ARGs are shown as circle nodes. The colors of ARG nodes correspond to classification according
to the corresponding class of antibiotic resistance assigned in CARD database (Alcock et al., 2020). The width of the edge between ARGs and MGEs
in proportion to the number of common occurrences of each pair.
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DIAMOND performs double-index alignment with a reduced
alphabet and spaced seeds. DIAMOND has been reported to
consume less amount of time for high-throughout scenarios
compared to BLASTX (Camacho et al., 2009) and BLASTP in
similar settings. We also use BLAST for our optional MGE
Parnanen et al. (Parnanen et al., 2018) database for the
nucleotide annotation, which is not available in DIAMOND.

2.6 Gene Co-occurrence and correlation
analysis

Co-occurrence analysis is a widely applied technique in
bioinformatics, and can infer important relationships among
genes, such as their taxonomic host, their tendency to be co-
expressed, and their ability to be co-mobilized via HGT (Faust
and Raes, 2016). Sequencing depth is an important factor that
influences the coverage and accuracy of assembly and thus the
accuracy of co-occurrence analysis. This, in addition to inherent
differences in microbiomes (diversity, representation in databases,
etc.) creates difficulties for identifying a single method to accurately
calculate gene correlations.

For co-occurrence analysis of ARGs and MGEs, the ARGem
pipeline combines an ARG database and an MGE database to count

the number of co-occurrence of contigs for each pair of one ARG
and one MGE.

For correlation analysis, ARGem first imputes the missing values
with zeros for the abundance data and then renormalizes it to be
relative abundance data. This method is adapted from (Tao, 2014).
We assume that the expression of each pair of genes is generated by
an underlying bivariate normal distribution. Considering a gene pair
denoted as (x1, x2), we calculate the mean values (μ1, μ2), the
standard deviation (σ1, σ2), and the correlation ρ. To accomplish
this, we need at least three complete gene pairs. Let N be the total
number of experiments, and let f(·) represent the probability density
function (pdf) of the underlying bivariate normal distribution. F(·)
represents the combination of the pdf and the cumulative
distribution function (cdf) of the normal distribution. The
likelihood function L is defined as follows:

L θ̂ | x1, x2( ) �
∏
N

i�1
f xi1, xi2( )δi1δi2 · ∂

∂x1
F xi1, c2( )δi1 1−δi2( )·

∂

∂x2
F c1, xi2( ) 1−δi1( )δi2 · F c1, c2( ) 1−δi1( ) 1−δi2( ),

where c1 and c2 are the detection cut-offs for x1 and x2, and δi1 and δi2 are
indicator variables indicating whether or not data is available for each xij.

FIGURE 4
A correlation graph for 16S rRNA normalized short read matching result of samples SRR2088951, SRR2088982, SRR2088983, SRR2089011,
SRR5571001, SRR5997542, SRR5997549, SRR9141345, SRR9141349, SRR9141356, SRR9141357, SRR9141362, SRR9141365, SRR9141380, and
SRR9141383. The color codes are the same as in Figure 3. The width of the edge between ARGs and MGEs is in proportion to the absolute correlation
value of each pair.
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In the above equation, we first calculate the regular likelihood
term f(·) when data are available for both pairs and then the second
term factorizes into the pdf of x1 and the cdf of x2 at the cutoff term
in a normal distribution that is shifted up by the distance of the
current x1 observation from its mean multiplied by the correlation
coefficient and scaled by the ratio of variances using F(·). If the
correlation between the genes is strong, we expect the cdf of x2 at the
cutoff to be directly related to the distance of x1 from its mean and
vice versa. Then we calculate the joint cdf of the bivariate normal
distribution at both cutoffs. The joint cdf term grows as the values of
the cut-offs rise relative to their corresponding means. As this term
increases, it tends to overshadow information from other terms.

Our approach involves maximizing the likelihood of observing a
given expression pair while adjusting for a known cut-off threshold.
In addition, we also capitalized on the data structure by introducing
correlation bounds. To obtain sharper correlation estimates, we

further utilize the partial correlation definition inequality to update
our correlation estimates based on the correlation between other
pairs. In this way, the proportional value of relative abundance can
directly reflect the degree of correlation of the potential related gene
pairs and we are able to produce correlation estimates even with
severe missing data issues.

In the next step, our user can apply the desired threshold within
the range [−1, 1] on the correlation matrix to filter out the relevant
gene pairs for further analysis or visualization.

2.7 Visualization

Network analysis provides an intuitive means to visualize
predicted relationships within bioinformatics fields, such as
protein-protein interaction networks (Bharadwaj et al., 2017),

FIGURE 5
NMDS (Kruskal, 1964) plot for the 3 groups of samples. The axes of a NMDS plot are arbitrary units. Different colors and symbols distinguish samples
in different groups. The stress value indicates the reliability of the ordination of the NMDS plot, while a stress value close to 0.05 indicates fair fit. In this
plot, there are two data points that overlap almost entirely, which means they are similar to each other in the multidimensional space, compared to other
data points.

Frontiers in Genetics frontiersin.org08

Liang et al. 10.3389/fgene.2023.1219297

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1219297


FIGURE 6
Bar plot of DirtyGenes (Shaw et al., 2019) test statistic result, divided into three sub-groups of the fifteen samples. This DirtyGenes statistic was
generated based on 16S rRNA normalized ARG annotation result output by the pipeline, with columns only preserved where there were non-zero values
for all three groups preserved.
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gene-gene networks (Franz et al., 2016), and gene co-expression
(Zhang and Horvath, 2005). ARGem approaches visualization from
two perspectives: correlations and co-occurrences. Correlation
graphs show relations among ARG annotation results without
MGE using the method described in Gene Co-occurrence and
Correlation Analysis. Co-occurrence graphs map ARGs and
MGEs based on a number of co-occurrence pairs annotated on
the same contigs assembled from raw sequences. For example, in
three contigs C1, C2, and C3 in one sample, all contain the ARG-
MGE pair ARG A1 and MGE M1, the occurrence of (A1, M1) is 3.
The width of the edge between A1 and M1 will reflect the co-
occurrence, in this case, which is 3. In correlation graphs, the width
of the edges is based on the correlation score between two genes
Gene Co-occurrence and Correlation Analysis and indicates the
relative strength of the relationship in Assembly and Annotation.
The size of each node is determined based on the sum of abundance
in the metagenomic library. Co-occurrence networks, on the other
hand, are an analysis of ARGs and MGE annotated on assembled
contigs (1,000+ bps). Each edge that connects an ARG node and an
MGE node represents the count of the given combination, where the
width of the edges indicates the frequency that the combination is
encountered (Arango-Argoty et al., 2019). Note that in co-
occurrence networks, ARG nodes are only connected toMGE nodes.

ARGem by default builds correlation graphs and co-occurrence
graphs using Cytoscape.js (Smoot et al., 2011; Franz et al., 2016), an
open-source JavaScript-based graph library (Franz et al., 2016).
Cytoscape provides interactive features so that users can select
the target genes or filter the abundance rank from the network.
Cytoscape library also enables changes in graphic scale, which can be
adjusted to end users’ preferable size of visualized images. Other
tools such as PythonNetworkX library (Hagberg et al., 2008) are also
included or can be made available for visualization.

2.8 Relational database

We employ the MySQL database for data management and
storage. The database schema is shown in Figure 2. Only general
information such as the SRA number and email address are required
for data retrieval and task status notification. As for optional fields,
we provide default data processing and visualization parameters,
such as the MGE database and the co-occurrence threshold. Users
can customize these parameters to meet their specific needs.

By allowing users to upload customizedmetadata spreadsheets, our
database design can expand to include arbitrary metadata attributes.
We record user custom metadata entries in the metadata_attribute
table, which are available for all projects. With custom metadata, users
can compare and visualize data across different projects. For an
example metadata spreadsheet, see Supplementary Material.

3 Results

3.1 Pipeline

The ARGem pipeline consists of multiple computational
components arranged primarily in a linear sequence, with built-in
detection of certain error cases that serve to halt the pipeline early and

send out an email notification of the error. We integrated the ARGem
pipeline as a key component in the web-based platform AgroSeek
(Liang et al., 2021). ARGem can also be deployed in other systems that
incorporates a relational database management system, as detailed in
Section Relational Database. The overall workflow is depicted in
Figure 1B. For a more detailed workflow diagram, see the
Supplementary Figure S1.

The typical pipeline steps are summarized in the following sub-
sections.

3.1.1 Input spreadsheet for a project
An ARGem Excel spreadsheet was designed through

collaboration with environmental scientists to identify required
versus recommended metadata for samples of various categories,
along with specified reporting units. As an example, for aquatic
environment samples, required metadata columns include the kind
of experiment type from which the sample was collected (e.g., lab,
field or pilot, selected from a drop-downmenu), the DNA extraction
method, the DNA sequencing platform, DNA sequencing output
(e.g., single or paired reads), and the SRA accession number for each
sample. The required columns are provided along with conditional
columns depending on the type of aquatic environment matrix
selected from the drop down menu.

Through an SRA number column, each sample is associated with
a unique SRA number (Sayers et al., 2022) in the input spreadsheet.
Therefore the raw data sequences can be conveniently retrieved from
the online repository, if they have not yet been added to local data
storage data. A complete, filled ARGem spreadsheet provides useful
information on both the metadata and the raw data sequence, which
can support richer analysis and visualization in later steps of the
pipeline. In addition, a relational database associated with the pipeline
is provided to store andmanage the uploaded data, as well as the status
of created projects.

Typically, the user selects one template from the ARGem library
of spreadsheet templates that best represents the environment under
study, customizes the template for their project, and enters the
metadata into the spreadsheet with one row for each metagenomic
sample.

There are in total six templates in the library, including five
templates for different environment sample types and one user
custom template. Through collaboration with environmental
scientists, we designed specific templates for water, soil, treated
or raw manure, pre- and post-harvest crop production system, and
air samples.

3.1.2 Retrieve DNA sequence data from NCBI
In this step, sequence data are retrieved based on the input SRA

numbers provided for each sample in the metadata spreadsheet.
These data subsequently serve as raw sequence files for the samples
required for subsequent analysis.

3.1.3 Assemble each DNA sample into contigs
In this step, the pipeline assembles the retrieved sequence files

using the integrated assembly tool, namely, MEGAHIT (Li et al.,
2015). This assembler was selected after evaluation on our server and
targeted data sets. For details of the assembler evaluation, see
Supplementary Table S1. The results of this step are a set of
contigs for each sample.
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3.1.4 Annotate known ARGs and MGEs in short
reads and contigs

This step performs annotation on both the assembled contigs
(long-contig annotation) and retrieved short reads (short reads
matching) using the integrated annotation tools (BLAST (Altschul
et al., 1990) and DIAMOND (Buchfink et al., 2015; 2021)). The
reference databases used for this step include an ARG reference
database CARD (Alcock et al., 2020) along with three optional
MGE reference databases: MobileOG (Brown et al., 2022),
NanoARG (Arango-Argoty et al., 2019) (which is the database also
used in our MetaCompare (Oh et al., 2018) service), and Parnanen
et al. (Parnanen et al., 2018). The annotated genes for each sample are
sent to output text files along with their relative abundances.

3.1.5 Analysis
After obtaining the assembly and annotation results of each

sample, the pipeline performs a set of analyses based on the results
and the metadata attributes. Because it is not possible to discern
ARGs imparted by mutations in housekeeping genes from true
housekeeping genes, due to limitations in the resolution of
sequencing technologies, ARGem excludes housekeeping genes
from ARG analysis. A list of excluded genes is provided in the
Supplementary Material. The results of the analysis are then made
available to the users, usually in the form of tabular files. After this
step, more optional analysis requiring user input parameters can be
performed according to the desires of the user.

3.1.6 Visualization
For the gene co-occurrence and correlation analysis results,

corresponding visualizations are generated and provided to the
users. Some of the visualizations can be customized by user-
selected parameter inputs.

3.1.7 Notification
After obtaining the results of each sample, or if the pipeline halts

early, an email notification is sent to a designated e-mail address
reporting the final status (success, partial success, or failure) of the
pipeline. When the pipeline does not execute successfully, the
notification will include specific information about the detected
errors to help guide the user in addressing the problem.

3.2 Verification

The ARGem pipeline was tested using publicly-available data
extracted from the NCBI database (Sayers et al., 2022). Results
shown in this section are based on 15 fresh water samples obtained
from BioProject PRJNA287840, collected monthly from 6 sites in
3 southwestern British Columbia streams over 14 months (Vlok
et al., 2019). In the analysis results presented later, these 15 samples
were arbitrarily divided into three groups to illustrate the
functionality of the tools, rather than to reflect the inherent
characteristics of the data. The results presented in this study
have been annotated with one of the pipeline’s default MGE
databases. However, users have the option to choose a different
database or integrate their preferred database into the pipeline.

The pipeline generated tables that summarize results for three
analyses: 1) short read matching to profile ARGs and estimate their

relative abundances, 2) assembly of contigs from short reads, and 3)
annotation of ARGs and MGEs in assembled contigs. Short read
matching results for these fifteen samples yielded 380 annotated
ARGs found in at least one sample out of the fifteen, with 16S rRNA,
TPM and FPKM normalization reported in three separate files.
Contig assembly generated assembled contigs for all fifteen samples.
The ARG and MGE annotation based on assembled contigs
generated one table of annotated ARGs and one table for
annotated MGEs, for each sample. A table was also generated to
report ARGs and MGEs that were found to co-occur in the samples.

Figure 3 shows the visualization result based on contig assembly
and annotation. This analysis and visualization is included in the
ARGem pipeline. This is a co-occurrence network based on ARG
and MGE annotation results on assembled contigs, using reference
database CARD (Alcock et al., 2020) and Parnanen et al. (Parnanen
et al., 2018), respectively. The co-occurrence graph is generated
based on the number of co-occurrences in the sample. Once each
combination of the MGE-ARG pair is counted, the pipeline filters
the number of occurrences based on user input. Filtered pairs
generate a co-occurrence graph, where nodes represent ARGs
and MGEs detected and edges represent their occurrence together.

Figure 4 shows the correlation result based on short read
matching. Given the 16S rRNA normalized ARG annotation
generated by the pipeline, a correlation matrix was generated by
the pipeline’s correlation analysis module and visualized as a
correlation graph. The correlation matrix calculated by our
proposed method reports a range from −1 to 1 and excludes
single paired combinations, where only two data points or less
were found. See also Supplementary Figure S2 for the correlation
visualization output using Python NetworkX library instead of the
default option Cytoscape.

Figure 5 and Figure 6 show the visualization results based on
short read matching. For the visualization on short read matching
results, the 15 samples were divided into 3 groups: 1) SRR2088951,
SRR2088982, SRR2088983, SRR2089011, 2) SRR5571001,
SRR5997542, SRR5997549, and 3) SRR9141345, SRR9141349,
SRR9141356, SRR9141357, SRR9141362, SRR9141365,
SRR9141380, SRR9141383. Results based on the three relative
abundance normalization methods are reported in the annotation
table, which can then be processed by external analysis tools. Based
on the 16S rRNA normalized ARG annotation generated by the
pipeline, an NMDS (Kruskal, 1964) plot was generated for the three
groups, as depicted in Figure 5. DirtyGenes (Shaw et al., 2019) was
also used to process the 16S rRNA normalized ARG annotation
result, where columns are preserved only if there were non-zero
values for all 3 groups. The average and standard deviation values of
DirtyGenes test statistic for each group depicted in Figure 6.

The visualizations shown here are examples of the analysis that
can be performed based on ARGem outputs, but do not have to be
limited to the tools and methods described above. Overall, the result
tables generated by the ARGempipeline are capable of further analysis
and can be processed by different analysis and visualization tools.

4 Discussion

Antibiotic resistance is a significant public health concern that
cannot be ignored (Vikesland et al., 2019). Metagenomics is a
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promising approach for comprehensively monitoring ARGs and
pathogens in healthcare settings, as demonstrated in recent studies
(Berglund et al., 2019; de Abreu et al., 2021; Shen et al., 2021). The
development of metagenomic data processing tools that can
effectively aid in this detection is a beneficial but also challenging
task. One of the challenges is that data from various studies can be
collected in different environments and have varying characteristics,
making it difficult to collate and organize the data. Additionally,
there are multiple versions of the MGE reference database, each
containing distinct lists of MGEs. This can be attributed to different
research fields having varying perspectives on important MGEs, but
also makes it challenging to develop an intergrated tool.

Here we integrated several essential aspects of metagenomic data
processing into the ARGem pipeline, including short read matching,
contig assembly, and annotation of ARGs and MGEs on assembled
contigs. These steps are aligned and automated to provide an all-
inclusive pipeline to support global ARG monitoring. The ARGem
pipeline allows flexible metadata table inputs, including user-
customizable metadata attributes, to be applied to data from
different environmental sources and allows possible customized
usage by users of this pipeline. A supporting SQL database
structure has been developed to manage the flexible input and
released along with the pipeline. In the ARG and MGE
annotation step, this pipeline provides several different MGE
databases for users to choose from. In the short read matching
step, the normalization results of three different methods (16S
rRNA, TPM, and FPKM) are provided to suit different research
purposes. The data generated from this pipeline are capable of being
further analyzed and visualized using various tools. Among those,
two analysis tools, namely, the correlation analysis and co-
occurrence network analysis tools, are included in the release of
the pipeline.

Our intention is to offer the community an available, flexible
and convenient pipeline designed specifically for metagenomics
data to accommodate tincreasing needs in related fields, primarily
focusing on the threats of ARGs posed to the agriculture chain
and human health. The ARGem pipeline is constructed based
on the discussion, suggestion, and testing by actual users who
have conducted metagenomics studies and performed agriculture
practices in related fields. By implementing flexible metadata
input and relational database storage, user customizable
reference databases, and an extendable analysis module, the
ARGem pipeline intends to introduce flexibility and variety for
data input and subsequent analysis, as well as automate the
handling of such data. With the release of this pipeline, it is
our intention for researchers to have a convenient pipeline to
deploy and run on lab scale resources.

5 Conclusion

In this study, we present the ARGem pipeline as a tool for
investigating features relevant to antibiotic resistance in
environmental metagenomic data sets. As a significant impact on
human health, antibiotic resistance has gained increasing attention
from researchers and policymakers. As metagnenomics studies

being an effective means of comprehensively monitoring ARGs
and pathogens in healthy environments, we aim for the ARGem
pipeline to contribute to this purpose as an integrated, flexible, and
deployable tool.

We describe in this paper the overall workflow andmechanics of
each step within the ARGem pipeline, including the methods and
tools integrated into the pipeline. We demonstrate its applicability
and flexibility through the analysis of metagenomic samples
collected from aquatic environments. The ARGem pipeline is
developed to be deployable on lab-scale resources, distinguished
from other large, general and online pipelines.

Our intention is to make this pipeline readily accessible to a
broad range of users, including governmental and academic
researchers and policymakers, for tracking key drivers of
antibiotic resistance in various environments using metagenomic
data. The ARGem pipeline is available in the public domain for free
use. In the future, more sequence process and analysis steps can be
incorporated into the ARGem pipeline to accommodate the rapid
pace of development in this field, which will be facilitated by the
adaptable nature of ARGem.
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