47 research outputs found

    Improvement in Performance of GFDM based 5G Wireless System with Massive MIMO and Channel Coding

    Get PDF
    In the realm of 5G wireless communication systems, non-orthogonal multiple access (NOMA) waveforms have emerged as highly promising candidates. Various NOMA waveforms such as FBMC, UFMC, and GFDM have gained significant attention due to their numerous advantages when compared to conventional OFDM systems. This paper delves into the examination of Bit Error Rate (BER) performance in the context of a Massive Multiple-Input, Multiple-Output (MIMO) based GFDM system for 5G technology. It explores the effects of different mapping techniques and filter roll-off factors. This approach amalgamates two advanced wireless communication technologies, Massive MIMO and GFDM, with the aim of harnessing their combined potential to elevate the performance and capacity of 5G communication systems. Massive MIMO contributes to substantial improvements in resilience against fading and interference, while GFDM offers superior frequency localization, reduced out-of-band emissions, and enhanced resource allocation flexibility when contrasted with traditional OFDM. The study demonstrates improved results, particularly when employing the optimal roll-off factor for the square cosine filter within the GFDM framework, and integrating channel coding techniques

    Youssef’s syndrome following caesarean section: a rare case with review of literature

    Get PDF
    Youssef’s syndrome is a rare condition characterized by vesicouterine fistula with cyclic haematuria, amenorrhoea and incontinence of urine. A vesicouterine fistula is an abnormal connection between the uterus and bladder that most commonly occur due to inadvertent injury to the bladder during lower segment caesarean section. Vesicouterine fistula leads to psychological and has the negative impact on quality of life. A high suspicion should be kept in mind if the patient presents with urinary incontinence even many years after caesarean section. However, conservative management may be appropriate in some cases, but the definitive mode of management is surgery. Hereby authors present a 22-year-old para 2 live 2 (previous 2 caesarean section) with vesicouterine fistula with the complaint of urinary incontinence, cyclical haematuria (menouria) and amenorrhoea a year after caesarean section done due to obstructed labour.

    Wireless Biometric Attendance Management System

    Get PDF
    Design of an automated system by using real time NRF - biometric system for simple and time saving attendance on a regular basis using the finger prints of the students at any college or department level along with the students incoming and outgoing log maintenance. Initially students fingerprints are scanned by the scanner and then a unique number is allotted as their individual enrollment. While taking the attendance, when students impress their fingerprints against the scanner, the system will compare the new fingerprint patterns and the connection between various points in the fingerprint and then match with the enrolment database. A match is recorded as an indication of processing, matching and mark of attendance respectively. Through this automated system,time, paperwork and manpower is reduced to the great extent

    Adaptation to Variable Environments, Resilience to Climate Change: Investigating Land, Water and Settlement in Indus Northwest India

    Get PDF
    This paper explores the nature and dynamics of adaptation and resilience in the face of a diverse and varied environmental and ecological context using the case study of South Asia’s Indus Civilization (ca. 3000–1300 BC). Most early complex societies developed in regions where the climatic parameters faced by ancient subsistence farmers were varied but rain falls primarily in one season. In contrast, the Indus Civilization developed in a specific environmental context that spanned a very distinct environmental threshold, where winter and summer rainfall systems overlap. There is now evidence to show that this region was directly subject to climate change during the period when the Indus Civilization was at its height (ca. 2500–1900 BC). The Indus Civilization, therefore, provides a unique opportunity to understand how an ancient society coped with diverse and varied ecologies and change in the fundamental environmental parameters. This paper integrates research carried out as part of the Land, Water and Settlement project in northwest India between 2007 and 2014. Although coming from only one of the regions occupied by Indus populations, these data necessitate the reconsideration of several prevailing views about the Indus Civilization as a whole and invigorate discussion about human-environment interactions and their relationship to processes of cultural transformation

    Intensified summer monsoon and the urbanization of Indus Civilization in northwest India

    Get PDF
    Today the desert margins of northwest India are dry and unable to support large populations, but were densely occupied by the populations of the Indus Civilization during the middle to late Holocene. The hydroclimatic conditions under which Indus urbanization took place, which was marked by a period of expanded settlement into the Thar Desert margins, remains poorly understood. We measured the isotopic values (Ύ18O and ΎD) of gypsum hydration water in paleolake Karsandi sediments in northern Rajasthan to infer past changes in lake hydrology, which is sensitive to changing amounts of precipitation and evaporation. Our record reveals that relatively wet conditions prevailed at the northern edge of Rajasthan from ~5.1 ± 0.2 ka BP, during the beginning of the agricultural-based Early Harappan phase of the Indus Civilization. Monsoon rainfall intensified further between 5.0 and 4.4 ka BP, during the period when Indus urban centres developed in the western Thar Desert margin and on the plains of Haryana to its north. Drier conditions set in sometime after 4.4 ka BP, and by ~3.9 ka BP an eastward shift of populations had occurred. Our findings provide evidence that climate change was associated with both the expansion and contraction of Indus urbanism along the desert margin in northwest India

    Adaptation to Variable Environments, Resilience to Climate Change: Investigating Land, Water and Settlement in Indus Northwest India

    Get PDF
    This paper explores the nature and dynamics of adaptation and resilience in the face of a diverse and varied environmental and ecological context using the case study of South Asia’s Indus Civilization (ca. 3000–1300 BC). Most early complex societies developed in regions where the climatic parameters faced by ancient subsistence farmers were varied but rain falls primarily in one season. In contrast, the Indus Civilization developed in a specific environmental context that spanned a very distinct environmental threshold, where winter and summer rainfall systems overlap. There is now evidence to show that this region was directly subject to climate change during the period when the Indus Civilization was at its height (ca. 2500–1900 BC). The Indus Civilization, therefore, provides a unique opportunity to understand how an ancient society coped with diverse and varied ecologies and change in the fundamental environmental parameters. This paper integrates research carried out as part of the Land, Water and Settlement project in northwest India between 2007 and 2014. Although coming from only one of the regions occupied by Indus populations, these data necessitate the reconsideration of several prevailing views about the Indus Civilization as a whole and invigorate discussion about human-environment interactions and their relationship to processes of cultural transformation

    Adaptation to Variable Environments, Resilience to Climate Change: Investigating Land, Water and Settlement in Indus Northwest India

    Get PDF
    This paper explores the nature and dynamics of adaptation and resilience in the face of a diverse and varied environmental and ecological context using the case study of South Asia’s Indus Civilization (ca. 3000–1300 BC). Most early complex societies developed in regions where the climatic parameters faced by ancient subsistence farmers were varied but rain falls primarily in one season. In contrast, the Indus Civilization developed in a specific environmental context that spanned a very distinct environmental threshold, where winter and summer rainfall systems overlap. There is now evidence to show that this region was directly subject to climate change during the period when the Indus Civilization was at its height (ca. 2500–1900 BC). The Indus Civilization, therefore, provides a unique opportunity to understand how an ancient society coped with diverse and varied ecologies and change in the fundamental environmental parameters. This paper integrates research carried out as part of the Land, Water and Settlement project in northwest India between 2007 and 2014. Although coming from only one of the regions occupied by Indus populations, these data necessitate the reconsideration of several prevailing views about the Indus Civilization as a whole and invigorate discussion about human-environment interactions and their relationship to processes of cultural transformation
    corecore