123 research outputs found

    Synthetic peptides as chemoattractants for bull spermatozoa structure activity correlations

    Get PDF
    The ability of various synthetic peptide analogs of Formyl-Met-Leu-Phe to induce chemotaxis in bull sperm is compared using an inverted capillary assay. The formyl group is essential for chemotactic activity and corresponding t-butyloxycarbonyl tripeptides are inactive. Sequence analogs, Formyl-Met-Phe-Leu, Formyl-Leu-Met-Phe and Formyl-Leu-Phe-Met are active. Replacement of Met and Leu by Pro does not diminish activity. Formyl-Met-Leu-Phe-NH2 is active suggesting that electrostatic interactions involving the carboxyl group may be unimportant in receptor interactions. The studies establish the importance of an amino terminal formyl group and a sequence of at least three hydrophobic residues, for inducing sperm chemotaxis

    Maintenance of respiratory chain function in mouse hearts with severely impaired mtDNA transcription

    Get PDF
    The basal mitochondrial transcription machinery is essential for biogenesis of the respiratory chain and consists of mitochondrial RNA polymerase, mitochondrial transcription factor A (TFAM) and mitochondrial transcription factor B2. This triad of proteins is sufficient and necessary for mtDNA transcription initiation. Abolished mtDNA transcription caused by tissue-specific knockout of TFAM in the mouse heart leads to early onset of a severe mitochondrial cardiomyopathy with lethality within the first post-natal weeks. Here, we describe a mouse model expressing human TFAM instead of the endogenous mouse TFAM in heart. These rescue mice have severe reduction in mtDNA transcription initiation, but, surprisingly, are healthy at the age of 52 weeks with near-normal steady-state levels of transcripts. In addition, we demonstrate that heavy-strand mtDNA transcription normally terminates at the termination-associated sequence in the control region. This termination is abolished in rescue animals resulting in heavy (H)-strand transcription of the entire control region. In conclusion, we demonstrate here the existence of an unexpected mtDNA transcript stabilization mechanism that almost completely compensates for the severely reduced transcription initiation in rescue hearts. Future elucidation of the underlying molecular mechanism may provide a novel pathway to treat mitochondrial dysfunction in human pathology

    Cone snail prolyl-4-hydroxylase alpha-subunit sequences derived from transcriptomic data and mass spectrometric analysis of variable proline hydroxylation in C. amadis venom

    No full text
    Putative prolyl-4-hydroxylase (P4H) alpha-subunit sequences have been extracted by mining transcriptomic data obtained from seven cone snail species C. amadis, C. monile, C. araneosus, C. miles, C. litteratus, C. frigidus, and C. ebraeus. Sequences ranging from 518 to 559 residues have been compared with representative animal P4H sequences. The alpha-subunitconsists of an N-terminus double domain, involved in dimerization and substrate binding, while the C-terminus contains the catalytic domain. Definitive functional annotation of the cone snail sequences has been achieved by an analysis of conserved residues responsible for catalytic function, specific conformational features, and subunit interactions, using two independent structures of the double domain, and the catalytic domain, previously reported in the literature. The variability of proline hydroxylation in conotoxins is illustrated by a mass spectrometric analysis of C. amadis venom. Site specific hydroxylation and the presence of peptides with multiple proline residues, resistant to modification, suggests that sequence and conformational effects may determine the substrate specificity of the Conus prolyl-4-hydroxylases. Significance: Proline hydroxylation is a widely observed post translational modification, with collagen being the pre-eminent example. Hydroxylation of proline is also widely observed in conotoxins, which are a major component of marine cone snail venom. This paper describes newly identified prolyl-4-hydroxylase sequences, using transcriptome data from seven Corms species. The predicted functional annotation of prolyl-4-hydroxylase sequences was carried out using two available crystal structures of independent domains. The mass spectrometric characterisation of proline/hydroxyproline containing peptides in C. amadis venom confirms sequence specific hydroxylation in Conus venom as shown previously by others

    Mass spectrometric identification of bromotryptophan containing conotoxin sequences from the venom of C. amadis

    No full text
    Four 30 residue conotoxin have been identified from the venom of C. amadis. MS/MS analysis of crude venom subjected to global reduction/alkylation yielded fragmentation patterns, which permitted searching and matching with a database of putative mature toxin sequences obtained from transcriptomic analysis. Of the four sequences identified, Am3408(Am6.1b), Am3452(Am6.1c), Am3136(Am6.2a) and Am3214(Am6.2b), three contain bromotryptophan residues, while an additional post translational modification, gamma carboxylation of glutamic acid, is present in Am3408(Am6.lb)/3452(Am6.1c). The conotoxins belong to the O1/O2 gene superfamily and possess cysteine framework VI/VII. While, the cysteine patterns show a similarity to omega conotoxins, the three C. amadis peptides are highly negatively charged and possess a significant content of hydrophobic residues. (C) 2018 Published by Elsevier Ltd

    HIGHER CARBON CONTENT IN ALANINE AMINOTRANSFERASE

    No full text
    corecore