48 research outputs found

    Climate variations in the Boreal Triassic — Inferred from palynological records from the Barents Sea

    Full text link
    This paper presents palynological evidence from the late Early Triassic (late Smithian) to the Late Triassic (Rhaetian) of the Barents Sea area: A continuous palynological succession from an exploration well (7228/7-1A) in the Nordkapp Basin (SW Barents Sea) and palynological data from a series of shallow cores drilled at the Svalis Dome (Central Barents Sea) representing selected Triassic intervals. These fully marine sediments are independently dated by marine faunas. Both records show significant shifts in the distribution of the main floral elements. Changing ratios of spore-pollen taxa, grouped as hygrophytes versus xerophytes and spores versus pollen, reveal major changes of the floras within the studied interval. One distinct turnover coincides with the Smithian/Spathian boundary where lycopsid and pteridophyte spores dominated assemblages change to pollen (pteridosperms and conifers) dominated assemblages. Lower Middle Triassic assemblages are again dominated by lycopsid spores while the assemblages from the upper part of the Middle Triassic and the lower part of the Late Triassic are characterised by dominance of coniferous pollen and show the decline of pteridosperms. In the latest Triassic fern spores are abundant and diverse. In contrast to the Middle Triassic the pollen assemblages are characterized by cycadophytes and Araucariacites. These distribution patterns are interpreted to reflect climatic changes. The presented results from Norwegian Boreal areas confirm the significant differences between quantitative distribution of specific taxa as well as diversity of major groups in plant assemblages from low and mid latitudes. The present survey opens new perspectives for more detailed comparisons and climatic interpretations of floras from the Triassic period, a time during which Mesozoic vegetation established. The major changes in the dominance of specific floral elements, especially the diversification and spreading of the conifers, can probably be related to climatic changes

    Geology and palynology of the Triassic succession of Bjørnøya

    Full text link
    The Triassic succession of Bjørnøya (200 m) comprises the Lower Triassic Urd Formation (65 m) of the Sassendalen Group, and the Middle and Upper Triassic Skuld Formation (135 m) of the Kapp Toscana Group. These units are separated by a condensed '.'Middle Triassic sequence represented by a phosphatic remainé conglomerate (0.2m). The Urd Formation consists of grey to dark grey shales with yellow weathering dolomitic beds and nodules. Palynology indicates the oldest beds to be Diencrian; ammonoid faunas in the middle and upper part of the formation arc of Smithian age. The organic content (c. 1 %) includes kerogen of land and marine origin, reflecting a shallow marine depositional environment. The Skuld Formation is dominated by grey shales with red weathering siderite nodules. There are minor coarsening upwards sequences; the highest bed exposed is a 20 m thick, very fine-grained sandstone. Palynomorphs indicate a late Ladinian age for the lower part of the formation, and macrofossils and palynomorphs indicate Ladinian to Carnian ages for the upper part. Sedimentary structures, a sparse marine fauna and microplankton indicate deposition in a shallow marine environment. The organic residues contain dominantly terrestrially derived kerogen

    Multiple climatic changes around the Permian-Triassic boundary event revealed by an expanded palynological record from mid-Norway

    Full text link
    Here, we present the palynological record from two shallow core holes (6611/09-U-01 and -02) from the Trøndelag Platform offshore mid-Norway consisting of 750 m of Upper Permian and Lower Triassic sediments. The relatively homogeneous assemblages recovered from the Upper Permian deposits are dominated by gymnosperm pollen, mainly pteridosperms. At the base of the Griesbachian, numerous spore species appear in the record, leading to an increased diversity. The change at this boundary is also marked by the massive reduction of one group of pteridosperm pollen (Vittatina). Together with other typical Permian elements (e.g., Lueckisporites virkkiae), this group is rare but consistently present in the lower part of the Griesbachian, and it gradually disappears in its upper part. The distribution of other groups such as taeniate and non-taeniate bisaccate gymnosperm pollen (pteridosperms and conifers) shows no significant change across the boundary, whereas spores and other gymnosperm pollen increase in diversity and abundance. These changes coincide with the formational change between the Schuchert Dal Formation (Upper Permian) and the Wordie Creek Formation (Griesbachian) equivalents. Late Permian and Griesbachian palynomorph assemblages display different patterns. The former show a homogeneous composition of low diversity, whereas the latter reflect diverse and variably composed floras. The data suggest that the arid phase of the Late Permian was followed by a humid phase at the base of the Griesbachian. In the Griesbachian section, a succession of six distinct palynological assemblages (phase II–VII) can be inferred. Comparable changes have been described from East Greenland. The variations in the palynological record are interpreted to reflect changing ecological conditions (e.g., changing humidity). Comparable variations in the distribution of δ13C isotope values reported from various sections from Greenland and China, showing stable values during the Late Permian and highly variable values during the Griesbachian, suggest common causes for the observed fluctuations. Multiphase volcanic activity of the Siberian traps seems to be the most likely candidate to have caused the variations in the δ13C isotope as well as in the palynological record. In contrast to the common claim that marine and terrestrial biota both suffered a mass extinction related to the Permian-Triassic boundary event, the studied material from the Norwegian midlatitudinal sites shows no evidence for destruction of plant ecosystems. The presence of diverse microfloras of Griesbachian age supports the idea that the climate in this area allowed most plants to survive the Permian-Triassic boundary event

    Biomagnetostratigraphy of the Vikinghøgda Formation, Svalbard (Arctic Norway), and the geomagnetic polarity timescale for the Lower Triassic

    No full text
    A bio-magnetostratigraphy for the Lower Triassic is constructed, using the ammonoid biostratigraphy from arctic Boreal successions. Combined thermal and alternating field demagnetisation determines the Triassic magnetic field polarity in 86% of specimens, with 36% showing linear trajectory line-fits and the remainder great circle trends towards the characteristic magnetisation. Mean pole directions for the Deltadalen (=50°, φ=159°, dp/dm=3.9°/5.1°), Lusitaniadalen (=56°, φ=163°, dp/dm=4.4°/5.4°) and Vendomdalen (=57°, φ=143°, dp/dm=4.4°/5.4°) members fall close to the European Lower Triassic apparent polar wander path. Mean directions for two of these member-means pass the reversal test. The remanence is predominantly carried by magnetite. The polarity stratigraphy, when integrated with the ammonoid and meager conodont data is similar to that determined from successions in the Sverdrup Basin (Canada). The Permian-Triassic boundary post-dates a pronounced palynofloral turnover, and pre-dates a short duration reverse magnetozone (LT1n.1r). In the correlated Shangsi section (in S. China) LT1n.1r occurs after the FAD of H. parvus, but in the arctic is within the Otoceras boreale Zone. The late Griesbachian to early Smithian is mostly reverse polarity, with three normal polarity intervals, overlain by mid and late Smithian normal polarity. The Spathian contains four reverse polarity intervals, the oldest one within the early Spathian with the remainder in the late Spathian. Transition into the Anisian is within the uppermost reverse magnetozone, a feature documented in other sections of this age. The polarity pattern is correlated to other marine sections, indicating the robustness of the bio-magnetostratigraphic composite and its utility in calibrating Lower Triassic time

    Rapid demise and recovery of plant ecosystems across the end-Permian extinction event

    Full text link
    The end-Permian extinction event was the most pronounced biotic and ecological crisis in the history of the Earth. It is assumed that over 80% of marine genera disappeared, and that this event had a major impact on the evolution of marine organisms. The impact of this event on terrestrial biota is poorly known and a matter of controversial discussions. In contrast to the fundamental changes in marine fauna most major groups of plants range from the Late Palaeozoic into the Mesozoic. Consequently the impact of the end-Permian extinction event on the evolution of plants was often regarded as minor. However, major changes in the composition of the plant communities have been documented and a number of catastrophic scenarios have been envisioned — including the almost total destruction of plant ecosystems. Based on expanded sections from the Southern Barents Sea (Northern Norway) we trace mid-latitudinal terrestrial ecosystems across the Permo–Triassic transition with a time resolution in the order of 10 kyr, based on a high resolution Corg-isotope stratigraphy. Our results show that the floral turnovers are linked with major changes in the C-isotope record and hence with global carbon cycling. The palynological records document the successive steps in the evolution of terrestrial ecosystems. After gradual changes during the latest Permian, plant ecosystems suffered from a major environmental perturbation leading to a rapid turnover from gymnosperm dominated ecosystems to assemblages dominated by lycopods. The dominance of the lycopods, expressed in a spore-spike, represents a relatively short-lived event in the order of 10 kyr. This perturbation of the terrestrial ecosystems preceded the globally recognized negative δ13Corg isotope spike by up to 100 kyr. It coincides with a first end-Permian negative shift of the C-isotope curve and was probably induced by a first major perturbation of the chemistry of the atmosphere, related to the onset of the volcanic activity of the Siberian Traps. Gymnosperms recovered prior to the major isotopic shift. The fast recovery of terrestrial ecosystem explains why all major plant groups survived the end-Permian extinction event while the majority of marine organisms were wiped out. The concordance of pattern of the δ13Corg in globally distributed marine and terrestrial sequences enables us to link turnovers in the terrestrial environment with marine extinction events. It demonstrates that the demise and the onset of the recovery of the terrestrial ecosystems was a global phenomenon and occurred prior to the major isotopic shift. The successive negative shifts in δ13Corg isotope values are thought to reflect CO2 input into the atmosphere by multiphase volcanic activity (Siberian Traps) or other consecutive events (e.g. methane release)

    The type section of the Vikinghogda Formation:a new Lower Triassic unit in central and eastern Svalbard

    No full text
    The Vikinghøgda Formation (250 m) is defined with a stratotype in Deltadalen-Vikinghøgda in central Spitsbergen. The Vikinghøgda Formation replaces the Vardebukta and Sticky Keep Formations of Buchan et al. (1965) and the lower part of the Barentsøya Formation of Lock et al. (1978) as extended geographically by Mørk, Knarud et al. (1982) in central Spitsbergen, Barentsøya and Edgeøya. The formation consists of three member: the Deltadalen Member (composed of mudstones with sandstones and siltstones), the Lusitaniadalen Member (dominated by mudstones with thin siltstone beds and some limestone concretions) and the Vendomdalen Member (composed of dark shales with dolomite interbeds and nodules). The Lusitaniadalen and Vendomdalen members replace the former Sticky Keep Formation/ Member in the siirne areu. The Vikinghøda Formation can be followed through central and eastern Spitsbergen to Barentøya and Edgeøya and includes all sediments between the chert-rich Kapp Starostin Formation (Permian) and the organic-rich shales of the Botneheia Formation (Middle Triassic). The subdivision into three members is also reflected in the organic carbon content and palynofacies. Upwards, each succeeding member becomes more distal, organic-rich and oil-prone than the one below. The Vikinghøda Formation is well-dated by six ammonoid zones, although the transitional beds between the Deltadalen and Lusitaniadalen members lack age diagnostic macrofossils. Corresponding palynozonation and magnetustratigraphy have also been determined. The overall stratigraphical development correlates well with other key Triassic areas in the Arctic, although intervals in the late Dienerian and early Smithian may be condensed or missing

    Smithian-Spathian boundary event: Evidence for global climatic change in the wake of the end-Permian biotic crisis

    No full text
    International audienceOne of the most important carbon cycle perturbations following the end-Permian mass extinction event straddles the Smithian-Spathian boundary (SSB) (Olenekian, Early Triassic). This anomaly is characterized by a prominent positive carbon isotope excursion known from Tethyan marine rocks. Its global signifi cance is established here by a new high paleolatitude record (Spitsbergen). Paleontological evidence, such as Boreal palynological data (Barents Sea, Norway) and global patterns of ammonoid distribution, indicates a synchronous major change in terrestrial and marine ecosystems near the SSB. The reestablishment of highly diverse plant ecosystems, including the rise of woody gymnosperms and decline of the formerly dominating lycopods, is interpreted as an effect of a major climate change. This hypothesis is supported by modeling of ammonoid paleobiogeography, the distribution patterns of which are interpreted as a proxy for sea surface temperatures (SST). The latest Smithian thus appears to have been a time of a warm and equable climate as expressed by an almost fl at pole to equator SST gradient. In contrast, the steep Spathian SST gradient suggests latitudinally differentiated climatic conditions. We propose that this drastic climate change and the global carbon cycle perturbation were triggered by a massive end-Smithian CO2 injection. The SSB event could therefore represent one of the causes for stepwise and delayed recovery of marine and terrestrial biotas in the wake of the end-Permian biotic crisis
    corecore