24 research outputs found
Endothelin-1 overexpression and endothelial nitric oxide synthase knock-out induce different pathological responses in the heart of male and female mice
AbstractAimsThe nitric oxide and endothelin systems are key components of a local paracrine hormone network in the heart. We previously reported that diastolic dysfunction observed in mice lacking the endothelial nitric oxide synthase (eNOSâ/â) can be prevented by a genetic overexpression of ET-1. Sexual dimorphisms have been reported in both ET-1 and NO systems. Particularly, eNOSâ/â mice present sex related phenotypic differences.Main methodsWe used the ET-1 transgenic (ET+/+), eNOSâ/â, and crossbred ET+/+eNOSâ/â mice, and wild type controls. We measured cardiac function by heart catheterization. Cardiac ventricles were collected for histological and molecular profiling.Key findingsWe report here that (i) the level of ET-1 expression in eNOSâ/â mice was elevated in males but not in females. (ii) Left ventricular end-diastolic blood pressure was higher in male eNOSâ/â mice than in females. (ii) eNOSâ/â males but not females developed cardiomyocyte hypertrophy. (iv) Perivascular fibrosis of intracardiac arteries developed in female ET+/+ and eNOSâ/â mice but not in males. Additionally, (v) the cardiac expression of metalloprotease-9 was higher in eNOSâ/â males compared to females. Finally, (vi) cardiac proteome analysis revealed that the protein abundance of the oxidative stress related enzyme superoxide dismutase presented with sexual dimorphism in eNOSâ/â and ET+/+ mice.SignificanceThese results indicate that the cardiac phenotypes of ET-1 transgenic mice and eNOS knockout mice are sex specific. Since both systems are key players in the pathogenesis of cardiovascular diseases, our findings might be important in the context of gender differences in patients with such diseases
25 years of endothelin research: the next generation
In the past three decades, endothelin and endothelin receptor antagonists have received great scientific and clinical interest, leading to the publication of more than 27,000 scientific articles since its discovery. The Thirteenth International Conference on Endothelin (ET-13) was held on September 8â11, 2013, at Tokyo Campus of the University of Tsukuba in Japan. Close to 300 scientists from 25 countries from around the world came to Tokyo to celebrate the anniversary of the discovery of the endothelin peptide discovered 25 years ago at the University of Tsukuba. This article summarizes some of the highlights of the conference, the anniversary celebration ceremony, and particularly the participation of next generation of endothelin researchers in endothelin science and the anniversary celebration. As a particular highlight, next generation endothelin researchers wrote a haiku (a traditional form of Japanese poetry originating from consisting of no more than three short verses and 27 on, or Japanese phonetic units) to describe the magic of endothelin science which they presented to the conference audience at the anniversary ceremony. The text of each haiku â both in its original language together with the English translation â is part of this article providing in an exemplary fashion how poetry can be bridged with science. Finally, we give an outlook towards the next 25 years of endothelin research
Analyse von Endothelin-1 transgenen und eNOS knockout MĂ€usen
The hormone Endothelinâ1 (ETâ1) exerts vasoconstrictive, inotropic, fibrotic
and mitogenic effects on the cardiovascular system through the activation of
ET receptor A. On the other hand, activation of ET receptor B stimulates the
endothelial nitric oxide synthase (eNOS); NO presents strong vasodilative and
cardioprotective properties and represses ETâ1 expression. The clinical
relevance of this delicate interplay has been acknowledged because of its
implication in many cardiovascular diseases, such as pulmonary arterial
hypertension, systemic hypertension, and coronary artery disease. However, the
underlying molecular mechanisms remain to be fully clarified. ETâ1 transgenic
(ET+/+) mice develop pulmonary, cardiac and renal fibrosis, glomerulosclerosis
and decreased glomerular filtration rate. However, in spite of the strong
vasoconstrictive feature of ETâ1, ET+/+ mice remain normotensive. The natural
functional antagonist of ETâ1, NO, was assumed to counteract the ETâ1 effect
on blood pressure in ET+/+ mice. To test this hypothesis in vivo, ET+/+ mice
were crossbred with eNOS knockâout (eNOSâ/â) mice. Similar to the eNOSâ/â
model, the ET+/+eNOSâ/â mice develop high blood pressure compared to wild type
(WT) and ET+/+ animals. However, at the age of nine months, the eNOSâ/â, but
not ET+/+eNOSâ/â mice, are characterized by diastolic dysfunction. These
findings suggested that transgenic overexpression of ETâ1 on an eNOSâ/â
background could be beneficial for diastolic functions. In this thesis, it is
shown that cardiac ETâ1 gene expression was elevated in both eNOSâ/â and
ET+/+eNOSâ/â mice compared to WT at the age of nine months with no significant
difference between these groups. This suggests that the functional differences
observed between eNOSâ/â and eNOSâ/âET+/+ animals are due to the chronic
overexpression of ETâ1 mediated by the transgene, which may have conditioned
ET+/+eNOSâ/â animals over time to prevent the development of diastolic
dysfunction. In line with this, eNOSâ/â animals displayed normal cardiomyocyte
diameters at the age of three months, but developed cardiac hypertrophy at the
age of nine months, whereas ET+/+eNOSâ/â mice showed enlarged cardiomyocytes
at the age of three months that were not detectable in animals nine months of
age. Histological analysis showed that cardiac arterioles were dilated in both
ET+/+ and ET+/+eNOSâ/â mice compared to WT and eNOSâ/â mice. By enhancing
blood flow, this could be beneficial for cardiac functions. In order to
dissect the molecular changes underlying this phenomenon, the cardiac proteome
of the different genotypes were compared to WT using twoâdimensional
electrophoresis coupled to mass spectrometry. Because these changes may take
place early in the life of the animals, three months old animals were
analyzed. The proteomics study revealed that transgenic overexpression of
ETâ1, with or without eNOS, led to a higher abundance of proteins regulating
oxidative stress indicating that, in contrast to eNOSâ/â animals, ET+/+ and
ET+/+eNOSâ/â mice developed molecular mechanisms limiting oxidative damages.
Moreover, diastolic dysfunction observed in eNOSâ/â mice may be explained by
the differential abundance of proteins involved in the contractile machinery.
Overexpression of ETâ1 in eNOSâ/â mice restored these changes and may have
thereby benefited the cardiac functions. Finally, this study indicated that a
shift from fatty acid to glucose metabolism, considered as cardioprotective,
may have occurred to a greater extent in crossbred animals than in eNOSâ/â
mice. Taken together, this study showed that transgenic overexpression of ETâ1
in mice can have beneficial effects on cardiac function, even in the absence
of eNOS, by modulating various systems (oxidative stress, contractile
machinery, and energy metabolism). The clinical relevance of these findings
should be confirmed by analyzing the impact of a pharmacological interference
with these systems on cardiac function. Finally, the fact that additional
overexpression of ETâ1 restored the deleterious effect of eNOS deficiency
underlines the importance of the interplay between the two systems in the
heart of mice.Endothelinâ1 (ETâ1) ist ein Peptidhormon, das durch Aktivierung des ETâ1
Rezeptors A vasokonstriktorische, inotrope, fibrotische und mitogene Effekte
im kardiovaskulÀren System vermittelt. Gleichzeitig stimuliert Aktivierung des
ETâ1 Rezeptors B die endotheliale StickstoffmonoxidâSynthase (eNOS), wobei NO
starke vasodilatative and kardioprotektive Eigenschaften aufweist und die ETâ1
Expression hemmt. Aufgrund seines wesentlichen Einflusses auf zahlreiche
Erkrankungen des kardiovaskulÀren Systems wie zum Beispiel die
pulmonalâarterielle und systemische Hypertonie oder die koronare
Herzerkrankung ist dieses fein abgestimmte Gleichgewicht von erheblicher
klinischer Relevanz; die zugrundeliegenden molekularen Mechanismen konnten
bislang jedoch nur unvollstÀndig identifiziert werden. In vorangegangenen
Arbeiten konnte gezeigt werden, dass transgene MĂ€use mit einer ETâ1
Ăberexpression eine pulmonale, kardiale und renale Fibrose sowie eine
Glomerulosklerose mit verminderter glomerulÀrer Filtrationsrate entwickeln.
Interessanterweise zeigen diese Tiere jedoch trotz der bekannten
vasokonstriktorischen Effekte von ETâ1 keine Hypertonie. Um die Hypothese,
dass dies auf eine Antagonisierung der ETâ1 Wirkung durch NO zurĂŒckzufĂŒhren
ist, in einem in vivo System zu ĂŒberprĂŒfen, wurden ET+/+ MĂ€use mit eNOS
knockâout Tieren (eNOSâ/â) gekreuzt. Analog zum PhĂ€notyp der eNOSâ/â Tiere
zeigte sich in diesem kombinierten ET+/+eNOSâ/â Modell eine arterielle
Hypertonie. WĂ€hrend eNOSâ/â MĂ€use jedoch im Alter von neun Monaten eine
diastolische Dysfunktion entwickelten, waren diese VerÀnderungen im
kombinierten ET+/+eNOSâ/â Modell nicht nachzuweisen, so dass sich damit
Hinweise fĂŒr einen möglichen protektiven Effekt der ETâ1 Ăberexpression auf
die diastolische Funktion ergaben. In der vorliegenden Arbeit wird gezeigt,
dass sowohl eNOSâ/â als auch ET+/+eNOSâ/â Tiere im Alter von neun Monaten eine
im Vergleich zu Wildtypkontrollen erhöhte ETâ1 Expression zeigen, die sich
zwischen diesen Gruppen nicht signifikant unterscheidet. Dies deutet darauf
hin, dass die funktionellen Unterschiede zwischen beiden Modellen darauf
zurĂŒckzufĂŒhren sein könnten, dass die Expression des ETâ1 Transgens in
ET+/+eNOSâ/â Tieren zu einer bereits frĂŒh beginnenden ETâ1 Ăberexpression
fĂŒhrt, wĂ€hrend sich dies in eNOSâ/â MĂ€usen erst im Verlauf entwickelt. Eine
chronische ETâ1 Ăberexpression könnte so im kombinierten ET+/+eNOSâ/â Modell
zu einer Konditionierung der Tiere fĂŒhren, die im weiteren Verlauf die
Entwicklung einer diastolischen Dysfunktion verhindert. Dies wird durch die
Beobachtung unterstĂŒtzt, dass eNOS-/â Tiere im Alter von drei Monaten normale
Kardiomyozytendurchmesser aufweisen, im Alter von neun Monaten jedoch eine
kardiale Hypertrophie entwickeln, wÀhrend eine im Alter von drei Monaten in
ET+/+eNOSâ/â MĂ€usen nachweisbare VergröĂerung der Kardiomyozytendurchmesser in
neun Monate alten Tieren nicht mehr nachweisbar ist. Histologisch zeigte sich
darĂŒber hinaus im Vergleich zu WildtypâKontrollen und eNOSâ/â Tieren sowohl in
ET+/+ als auch in ET+/+eNOSâ/â MĂ€usen eine Dilatation kardialer Arteriolen, so
dass eine vermehrte myokardiale Durchblutung zu den beobachteten funktionellen
Unterschiede beitragen könnte. Um die molekularen Mechanismen, die diesen
Beobachtungen zugrunde liegen, zu analysieren, erfolgte ein Vergleich des
kardialen Proteoms jeder Genotypen mit Wildtyp Kontrollen durch
zweidimensionale Elektrophorese in Kombination mit Massenspektrometrie. Hier
zeigte sich, dass die Ăberexpression von ETâ1 sowohl im Wildtyp als auch im
eNOS â/â Hintergrund zu einer höheren Expression von Proteinen der oxidativen
Stressantwort fĂŒhrt. Dies deutet darauf hin, dass ET+/+ and ET+/+eNOSâ/â Tiere
im Gegensatz zu eNOSâ/â MĂ€usen molekulare Mechanismen entwickelt haben, um
SchĂ€den durch oxidativen Stress zu limitieren. DarĂŒberhinaus war die
beobachtete diastolische Dysfunktion in eNOSâ/â MĂ€usen mit Ănderungen in der
Expression von Proteinen, die bei der Regulation kontraktiler Prozesse eine
Rolle spielen, assoziiert. ETâ1 Ăberexpression fĂŒhrte in eNOSâ/â Tieren zu
einer Antagonisierung dieser VerĂ€nderungen. SchlieĂlich zeigte sich in diesen
Untersuchungen, dass im ET+/+eNOSâ/â Modell im Gegensatz zu eNOSâ/â Tieren in
höherem MaĂe eine Verschiebung vom FettsĂ€ureâMetabolismus zur vermehrten
GlukoseâUtilisation erfolgt, die als kardioprotektiv betrachtet wird.
Zusammenfassend wird in der vorliegenden Arbeit damit gezeigt, dass eine
chronische Ăberexpression von ETâ1 in MĂ€usen durch die Modulation
verschiedener Systeme (oxidativer Stress, Kontraktionsprozesse,
Energiemetabolismus) auch in Abwesenheit der eNOS protektive Effekte auf die
kardiale Funktion haben kann. Untersuchungen zum Einfluss einer
pharmakologischen Modulation dieser Systeme auf kardiale Funktionsparameter
könnten dazu beitragen, die klinische Relevanz dieser Beobachtungen zu
ĂŒberprĂŒfen
Global Overexpression of ET-1 Decreases Blood Pressure - A Systematic Review and Meta-Analysis of ET-1 Transgenic Mice
Background/Aims: ET-1 has independent effects on blood pressure regulation in vivo, it is involved in tubular water and salt excretion, promotes constriction of smooth muscle cells, modulates sympathetic nerve activity, and activates the liberation of nitric oxide. To determine the net effect of these partially counteracting mechanisms on blood pressure, a systematic meta-analysis was performed. Methods: Based on the principles of Cochrane systematic reviews, we searched in major literature databases - MEDLINE (PubMed), Embase, Google Scholar, and the China Biological Medicine Database (CBM-disc) - for articles relevant to the topic of the blood pressure phenotype of endothelin-1 transgenic (ET-1+/+) mice from January 1, 1988 to March 31, 2016. Review Manager Version 5.0 (Rev-Man 5.0) software was applied for statistical analysis. In total thirteen studies reported blood pressure data. Results: The meta-analysis of blood pressure data showed that homozygous ET-1 transgenic mice (ET-1+/+ mice) had a significantly lower blood pressure as compared to WT mice (mean difference: -2.57 mmHg, 95% CI: -4.98⌠-0.16, P = 0.04), with minimal heterogeneity (P = 0.86). A subgroup analysis of mice older than 6 months revealed that the blood pressure difference between ET-1+/+ mice and WT mice was even more pronounced (mean difference: -6.19 mmHg, 95% CI: -10.76⌠-1.62, P = 0.008), with minimal heterogeneity (P = 0.91). Conclusion: This meta-analysis provides robust evidence that global ET-1 overexpression in mice lowers blood pressure in an age-dependent manner. Older ET-1+/+ mice have a somewhat more pronounced reduction of blood pressure
Physiological Relevance of Hydrolysis of Atrial Natriuretic Peptide by Endothelin-Converting Enzyme-1
Endothelin-converting enzyme-1 (ECE-1) is a membrane-bound metalloprotease that cleaves biologically inactive big endothelin-1 (ET-1) into active ET-1. ET-1 is involved in the cardiovascular homeostasis and the development of cardiovascular diseases including pulmonary arterial hypertension and heart failure. Atrial natriuretic peptide (ANP) is an endogenous hormone that is released from the heart in response to myocardial stretch and overload. ANP was shown to be hydrolyzed by neutral endopeptidase 24.11 (NEP) which shares important structural features with ECE-1. Previous in vitro studies using recombinant soluble ECE-1 suggested that ECE-1 cleaved several biologically active peptides including ANP in addition to big ET-1. However, physiological relevance of ANP-degrading activity by ECE-1 has stayed unclear. Here, we aimed to investigate whether endogenous ECE-1 is able to hydrolyze ANP using live-cell based assay and ECE-1-deficient mice. Chinese hamster ovary (CHO) cells, which lack detectable levels of ECE activity, degraded ANP in the medium efficiently when transfected with ECE-1 cDNA. ANP peptide contents in the E14-15 embryos were significantly higher in ECE-1+/- mice compared with ECE-1+/+ mice. These observations strongly suggest that ECE-1 is involved in the physiological degradation of ANP in vivo. Thus, pharmacological inhibition of ECE-1 may provide a novel strategy to treat various cardiovascular diseases by suppressing and potentiating the ET and ANP pathway, respectively
Vascular endothelium derived endothelin-1 is required for normal heart function after chronic pressure overload in mice.
BACKGROUND: Endothelin-1 participates in the pathophysiology of heart failure. The reasons for the lack of beneficial effect of endothelin antagonists in heart failure patients remain however speculative. The anti-apoptotic properties of ET-1 on cardiomyocytes could be a reasonable explanation. We therefore hypothesized that blocking the pro-apoptotic TNF-α pathway using pentoxifylline could prevent the deleterious effect of the lack of ET-1 in a model for heart failure. METHODS: We performed transaortic constriction (TAC) in vascular endothelial cells specific ET-1 deficient (VEETKO) and wild type (WT) mice (n = 5-9) and treated them with pentoxifylline for twelve weeks. RESULTS: TAC induced a cardiac hypertrophy in VEETKO and WT mice but a reduction of fractional shortening could be detected by echocardiography in VEETKO mice only. Cardiomyocyte diameter was significantly increased by TAC in VEETKO mice only. Pentoxifylline treatment prevented cardiac hypertrophy and reduction of fractional shortening in VEETKO mice but decreased fractional shortening in WT mice. Collagen deposition and number of apoptotic cells remained stable between the groups as did TNF-α, caspase-3 and caspase-8 messenger RNA expression levels. TAC surgery enhanced ANP, BNP and bcl2 expression. Pentoxifylline treatment reduced expression levels of BNP, bcl2 and bax. CONCLUSIONS: Lack of endothelial ET-1 worsened the impact of TAC-induced pressure overload on cardiac function, indicating the crucial role of ET-1 for normal cardiac function under stress. Moreover, we put in light a TNF-α-independent beneficial effect of pentoxifylline in the VEETKO mice suggesting a therapeutic potential for pentoxifylline in a subpopulation of heart failure patients at higher risk
ET-1 from endothelial cells is required for complete angiotensin II-induced cardiac fibrosis and hypertrophy
AbstractAimsHypertensive patients develop cardiac hypertrophy and fibrosis with increased stiffness, contractile deficit and altered perfusion. Angiotensin II (AngII) is an important factor in the promotion of this pathology. The effects of AngII are partly mediated by endothelin-1 (ET-1) and transforming growth factor-ÎČ. The exact feature of these pathways and the intercellular communications involved remain unclear. In this study, we explored the role of endothelial cell-derived ET-1 in the development of AngII-induced cardiac fibrosis and hypertrophy.Main methodsWe used mice with vascular endothelial cell specific ET-1 deficiency (VEETKO) and their wild type littermates (WT). Mice were infused for one week with AngII (3.2mg/kg/day, n=12) or vehicle (0.15mol/L NaCl and 1mmol/L acetic acid, n=5), using subcutaneous mini-pumps. Hearts were stained with hematoxylinâeosin and masson's trichrome for histology. Cardiac gene expression and protein abundance were measured by Northern Blot, real time PCR and Western Blot.Key findingsAngII-induced cardiac hypertrophy, interstitial and perivascular fibrosis were less pronounced in VEETKO mice compared to WT. Blood pressure increased similarly in both genotypes. Expression of connective tissue growth factor, tumor growth factor-ÎČ, collagen I and III in response to AngII required endothelial ET-1. Endothelial ET-1 was also necessary to the elevation in protein kinase C ÎŽ abundance and ERK1/2 activation. AngII-induced elevation in PKCΔ abundance was however ET-1 independent.SignificanceThis study underscores the significance of ET-1 from the vasculature in the process of AngII-induced cardiac hypertrophy and fibrosis, independently from blood pressure. Endothelial ET-1 represents therefore a possible pharmacological target