1,142 research outputs found

    The management of de-cumulation risks in a defined contribution environment

    Get PDF
    The aim of the paper is to lay the theoretical foundations for the construction of a flexible tool that can be used by pensioners to find optimal investment and consumption choices in the distribution phase of a defined contribution pension scheme. The investment/consumption plan is adopted until the time of compulsory annuitization, taking into account the possibility of earlier death. The effect of the bequest motive and the desire to buy a higher annuity than the one purchasable at retirement are included in the objective function. The mathematical tools provided by dynamic programming techniques are applied to find closed form solutions: numer-ical examples are also presented. In the model, the trade-off between the different desires of the individual regarding consumption and final annuity can be dealt with by choosing appropriate weights for these factors in the setting of the problem. Conclusions are twofold. Firstly, we find that there is a natural time-varying target for the size of the fund, which acts as a sort of safety level for the needs of the pensioner. Secondly, the personal preferences of the pensioner can be translated into optimal choices, which in turn affect the distribution of the consumption path and of the final annuity

    Formation of the first three gravitational-wave observations through isolated binary evolution

    Get PDF
    During its first 4 months of taking data, Advanced LIGO has detected gravitational waves from two binary black hole mergers, GW150914 and GW151226, along with the statistically less significant binary black hole merger candidate LVT151012. We use our rapid binary population synthesis code COMPAS to show that all three events can be explained by a single evolutionary channel -- classical isolated binary evolution via mass transfer including a common envelope phase. We show all three events could have formed in low-metallicity environments (Z = 0.001) from progenitor binaries with typical total masses 160M\gtrsim 160 M_\odot, 60M\gtrsim 60 M_\odot and 90M\gtrsim 90 M_\odot, for GW150914, GW151226, and LVT151012, respectively.Comment: Published in Nature Communication

    STROOPWAFEL: Simulating rare outcomes from astrophysical populations, with application to gravitational-wave sources

    Get PDF
    Gravitational-wave observations of double compact object (DCO) mergers are providing new insights into the physics of massive stars and the evolution of binary systems. Making the most of expected near-future observations for understanding stellar physics will rely on comparisons with binary population synthesis models. However, the vast majority of simulated binaries never produce DCOs, which makes calculating such populations computationally inefficient. We present an importance sampling algorithm, STROOPWAFEL, that improves the computational efficiency of population studies of rare events, by focusing the simulation around regions of the initial parameter space found to produce outputs of interest. We implement the algorithm in the binary population synthesis code COMPAS, and compare the efficiency of our implementation to the standard method of Monte Carlo sampling from the birth probability distributions. STROOPWAFEL finds \sim25-200 times more DCO mergers than the standard sampling method with the same simulation size, and so speeds up simulations by up to two orders of magnitude. Finding more DCO mergers automatically maps the parameter space with far higher resolution than when using the traditional sampling. This increase in efficiency also leads to a decrease of a factor \sim3-10 in statistical sampling uncertainty for the predictions from the simulations. This is particularly notable for the distribution functions of observable quantities such as the black hole and neutron star chirp mass distribution, including in the tails of the distribution functions where predictions using standard sampling can be dominated by sampling noise.Comment: Accepted. Data and scripts to reproduce main results is publicly available. The code for the STROOPWAFEL algorithm will be made publicly available. Early inquiries can be addressed to the lead autho

    Modelling stochastic bivariate mortality

    Get PDF
    Stochastic mortality, i.e. modelling death arrival via a jump process with stochastic intensity, is gaining increasing reputation as a way to represent mortality risk. This paper represents a first attempt to model the mortality risk of couples of individuals, according to the stochastic intensity approach. On the theoretical side, we extend to couples the Cox processes set up, i.e. the idea that mortality is driven by a jump process whose intensity is itself a stochastic process, proper of a particular generation within each gender. Dependence between the survival times of the members of a couple is captured by an Archimedean copula. On the calibration side, we fit the joint survival function by calibrating separately the (analytical) copula and the (analytical) margins. First, we select the best fit copula according to the methodology of Wang and Wells (2000) for censored data. Then, we provide a sample-based calibration for the intensity, using a time-homogeneous, non mean-reverting, affine process: this gives the analytical marginal survival functions. Coupling the best fit copula with the calibrated margins we obtain, on a sample generation, a joint survival function which incorporates the stochastic nature of mortality improvements and is far from representing independency.On the contrary, since the best fit copula turns out to be a Nelsen one, dependency is increasing with age and long-term dependence exists
    corecore