16 research outputs found

    Pertechnetate/Perrhenate Surface Complexation on Bamboo Engineered Biochar

    No full text
    The work deals with the evaluation of biochar samples prepared from Phyllostachys Viridiglaucescens bamboo. This evaluation consists of the characterization of prepared materials’ structural properties, batch and dynamic sorption experiments, and potentiometric titrations. The batch technique was focused on obtaining basic sorption data of 99mTcO4− on biochar samples including influence of pH, contact time, and Freundlich isotherm. ReO4−, which has very similar chemical properties to 99mTcO4−, was used as a carrier in the experiments. Theoretical modeling of titration curves of biochar samples was based on the application of surface complexation models, namely, so called Chemical Equilibrium Model (CEM) and Ion Exchange Model (IExM). In this case it is assumed that there are two types of surface groups, namely, the so-called layer and edge sites. The dynamic experimental data of sorption curves were fitted by a model based on complementary error function erfc(x)

    Pertechnetate/Perrhenate Surface Complexation on Bamboo Engineered Biochar

    No full text
    The work deals with the evaluation of biochar samples prepared from Phyllostachys Viridiglaucescens bamboo. This evaluation consists of the characterization of prepared materials’ structural properties, batch and dynamic sorption experiments, and potentiometric titrations. The batch technique was focused on obtaining basic sorption data of 99mTcO4− on biochar samples including influence of pH, contact time, and Freundlich isotherm. ReO4−, which has very similar chemical properties to 99mTcO4−, was used as a carrier in the experiments. Theoretical modeling of titration curves of biochar samples was based on the application of surface complexation models, namely, so called Chemical Equilibrium Model (CEM) and Ion Exchange Model (IExM). In this case it is assumed that there are two types of surface groups, namely, the so-called layer and edge sites. The dynamic experimental data of sorption curves were fitted by a model based on complementary error function erfc(x)

    The Removal of Pertechnetate from Aqueous Solution by Synthetic Hydroxyapatite: The Role of Reduction Reagents and Organic Ligands

    No full text
    The use of knowledge from technetium radiochemistry (even from nuclear medicine applications) allows us to select an sorbent for 99mTc radionuclide sorption, which is hydroxyapatite. Using radioisotope indication, the 99mTcO₄− sorption process on synthetic hydroxyapatite was studied by the batch method in the presence of SnCl2 and FeSO4 reducing agents. The complexing organic ligands’ effect on the 99mTcO₄− sorption under reducing conditions was investigated. In the presence of Sn2+ ions without the addition of organic ligand, the sorption percentage reached above 90% independently of the environment. In the presence of Fe2+ ions without the addition of organic ligand, the sorption of 99mTcO₄− was significantly lower and was at approximately 6%, depending on the concentration of Fe2+ ions in solution. The effect of complexing organic ligands on the 99mTcO₄− sorption on hydroxyapatite from the aqueous solution, acetate buffer and phosphate buffer decreases in the following order for Sn2+: oxalic acid > ethylenediaminetetraacetic acid > ascorbic acid. In the presence of Fe2+ ions without organic ligands, the sorption reached up to 15% depending on the composition of the solution. The addition of oxalic acid and ascorbic acid increased the sorption up to 80%. The ethylenediaminetetraacetic acid had no significant effect on the sorption of technetium on hydroxyapatite

    Ion-Imprinted Polymers: Synthesis, Characterization, and Adsorption of Radionuclides

    No full text
    Growing concern over the hazardous effect of radionuclides on the environment is driving research on mitigation and deposition strategies for radioactive waste management. Currently, there are many techniques used for radionuclides separation from the environment such as ion exchange, solvent extraction, chemical precipitation and adsorption. Adsorbents are the leading area of research and many useful materials are being discovered in this category of radionuclide ion separation. The adsorption technologies lack the ability of selective removal of metal ions from solution. This drawback is eliminated by the use of ion-imprinted polymers, these materials having targeted binding sites for specific ions in the media. In this review article, we present recently published literature about the use of ion-imprinted polymers for the adsorption of 10 important hazardous radionuclides—U, Th, Cs, Sr, Ce, Tc, La, Cr, Ni, Co—found in the nuclear fuel cycle

    Adsorption of Malachite Green Dye onto Mesoporous Natural Inorganic Clays: Their Equilibrium Isotherm and Kinetics Studies

    No full text
    Contamination of water with organic dyes is a major environmental concern as it causes serious life-threatening environmental problems. The present research was designed to evaluate the potential of three different natural inorganic clays (NICs) i.e., Pakistani bentonite clay (PB), bentonite purchased from Alfa Aesar (BT), and Turkish red mud (RM) for malachite green (MG) dye removal from an aqueous solution. Various analytical techniques, namely X-ray fluorescence spectrometry (XRF), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), Brunauer–Emmett–Teller surface area measurement (BET), and thermogravimetric analysis (TGA), were used to investigate the physicochemical properties of the NICs samples. The effect of adsorption operational parameters such as contact time, aqueous phase pH, dye concentration, and amount of NICs on the adsorption behavior of MG onto NICs samples were investigated under the batch adsorption system. The equilibrium and kinetic inspection reflected the best description of MG adsorption behavior by the Langmuir isotherm model and pseudo-first-order kinetic model, respectively. The results indicated that the adsorption was favorable at higher pH. The maximum adsorption capacities calculated by Langmuir isotherm for PB, BT, and RM were found to be 243.90 mg/g, 188.68 mg/g, and 172.41 mg/g, respectively. It can be concluded that natural inorganic clays with a higher surface area can be used as an effective adsorbent material to remove the MG dye from an aqueous solution
    corecore