16 research outputs found

    Forecasting of Atlantic tropical cyclones using a kilo-member ensemble

    Get PDF
    Department Head: Jeffrey L. Collett.2004 Summer.Includes bibliographical references (pages [175]-180).The past 30 years have witnessed steady improvements in the skill of tropical cyclone track forecasts. These increases have been largely driven by improved numerical weather prediction models and increased surveillance of the storm environment through aircraft reconnaissance and satellite remote sensing. The skill of deterministic track forecasts from full-physics models is gradually approaching the theoretical limit of predictability that arises due to the atmosphere's chaotic nature and limitations in determining the initial state. To make further progress, it is necessary to treat the uncertainty of the initial condition. One practical approach is to sample this uncertainty by perturbing the initial state. The resulting suite of forecasts that result from integrating such perturbations is known as an ensemble. This thesis describes the design, implementation, and evaluation of a semi-operational ensemble forecasting system using an efficient multigrid barotropic vorticity equation model (MBAR). Five perturbation classes are used to simulate uncertainties in the storm environment and vortex structure. Uncertainties in the storm environment are simulated by using the background environmental flow evolutions provided by the NCEP Global Forecasting System (GFS) ensemble forecasts. Several deep layer-mean wind averages account for uncertainty in the depth of the storm steering layer. Uncertainties in the decomposition of the tropical atmosphere's vertical modes are simulated by varying the model equivalent phase speed. Finally, uncertainties in the vortex structure are simulated by varying the vortex size and storm motion vector. Each perturbation in a given class is cross-multiplied with all other perturbations of other classes to obtain an ensemble with 1980 members. One of the fundamental questions addressed by this research is whether such cross-multiplication increases the degrees of freedom in the ensemble. The ensemble is run for 294 cases from the 2001-2003 Atlantic hurricane seasons. Theory dictates that a properly-perturbed ensemble should, on average, be more accurate than any single ensemble member, but it was found that the kilo-ensemble mean forecast did not demonstrate substantial improvement over the control forecast. However, the ensemble mean did show substantial skill relative to the five-day climatology and persistence model (CLP5) throughout the 120-h forecast period. The ensemble mean spread (the mean distance of the individual members from the ensemble mean), x-bias, and y-bias statistics are also evaluated. Probabilistic interpretations are valid with an ensemble of this size, so cumulative strike probabilities are calculated explicitly from the kilo-ensemble output. In a related possibilistic interpretation, the ensemble can be looked upon as mapping out the subspace of all possible storm tracks, so the reliability of this ensemble envelope is examined. Finally, if the ensemble can accurately simulate the uncertainties in the dynamical system, then there should be a positive relationship between ensemble mean spread and the error of the ensemble mean forecast. A strong relationship allows useful forecasts of forecast skill to be made at the time of the forecast. The kilo-member ensemble was found to have a weak spread-error relationship that peaks at 60 h

    Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis

    Get PDF
    Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.National Institute of Allergy and Infectious Diseases (U.S.)National Institutes of Health. Department of Health and Human Services (contract HHSN266200400001C)National Institutes of Health. Department of Health and Human Services(contract HHSN2722009000018C)Brazil. National Council for Scientific and Technological Developmen

    Formation of the hurricane eye

    Get PDF
    Department Head: Richard Harlan Johnson.2010 Spring.Includes bibliographical references (pages [227]-240).This dissertation consists of three distinct studies which investigate aspects of eye formation. The first study reviews eye phenomenon in a variety of vortices ranging from simple vortices to the menagerie of geophysical vortices, emphasizing similarities and differences to the eyes formed in hurricanes. The hurricane eye is found to be a paradoxical structure imposed by conservation of angular momentum and the boundaries of the vortex. A comprehensive definition for hurricane eye formation is proposed and various eye formation mechanisms are summarized. The next study presents a simple theoretical argument to isolate the conditions under which a tropical cyclone can rapidly develop a warm-core thermal structure and subsequently approach a steady state. The theoretical argument is based on the balanced vortex model and, in particular, on the associated transverse circulation equation and the geopotential tendency equation. The transverse circulation and the temperature tendency in a tropical vortex depend not only on the diabatic forcing, but also on the spatial distributions of the static stability, the baroclinity, and the inertial stability. The vortex response to diabatic heating depends critically on whether the heating occurs in the low inertial stability region outside the radius of maximum wind or in the high inertial stability region inside the radius of maximum wind. This result suggests that rapid intensification is favored for storms which have at least some of the eyewall convection inside the radius of maximum wind. The development of an eye partially removes diabatic heating from the high inertial stability region of the storm center, yet rapid intensification may continue if the eyewall heating continues to become more efficient. As the warm core matures and static stability increases over the inner core, conditions there become less favorable for deep upright convection and the storm tends to approach a steady state. The final study characterizes the kinematic and thermodynamic changes that occur before, during, and after the initial eye formations of a broad set of Atlantic tropical cyclones. To obtain the requisite structure and intensity parameters, a new data set has been synthesized from the Vortex Data Messages transmitted by routine aircraft reconnaissance from 1989-2008. Intensity ranges are determined for the times when the eye/eyewall structure first appears in aircraft radar and infrared satellite imagery. The mean intensity at which an eye is first observed in both aircraft or satellite imagery is found to be 58 kt, somewhat lower than reported in previous studies. Changes about the time of eye formation are examined for intensity, the radius of maximum winds, the minimum Rossby radius of deformation, eye temperature and dew point temperature depression. Storms are found to intensify most rapidly near the time of eye formation, especially when a persistent eye is observed in infrared satellite imagery. Many storms which are forming eyes are found to undergo a substantial and rapid contraction in the radius of maximum winds during the 24-h period before the eye is observed; once the eye is present, this contraction slows or ceases. Strong warming at lower levels (850 or 700 hpa) of the eye is not observed to correlate well with the time in which the eye is first observed. Finally, observations suggest that the dynamical heating efficiency of the resulting eyewall increases even as the physical scale of the efficient heating region decreases. This allows the storm to continue intensifying even though the total inner core diabatic heating may decrease. The answer to why some storms fail to form eyes may shed light on whether eye formation is a stochastic process involving constructive and destructive mesoscale interactions -- or whether it is a manifold attractor of the system sometimes stymied by an unfavorable environment

    Forecasts of Hurricanes Using Large-Ensemble Outputs

    No full text
    © 2020 American Meteorological Society. This paper describes the development of a model framework for Forecasts of Hurricanes Using Large-Ensemble Outputs (FHLO). FHLO quantifies the forecast uncertainty of a tropical cyclone (TC) by generating probabilistic forecasts of track, intensity, and wind speed that incorporate the state-dependent uncertainty in the large-scale field. The main goal is to provide useful probabilistic forecasts of wind at fixed points in space, but these require large ensembles [O(1000)] to flesh out the tails of the distributions. FHLO accomplishes this by using a computationally inexpensive framework, which consists of three components: 1) a track model that generates synthetic tracks from the TC tracks of an ensemble numerical weather prediction (NWP) model, 2) an intensity model that predicts the intensity along each synthetic track, and 3) a TC wind field model that estimates the time-varying two-dimensional surface wind field. The intensity and wind field of a TC evolve as though the TC were embedded in a time-evolving environmental field, which is derived from the forecast fields of ensemble NWP models. Each component of the framework is evaluated using 1000-member ensembles and four years (2015–18) of TC forecasts in the Atlantic and eastern Pacific basins. We show that the synthetic track algorithm generates tracks that are statistically similar to those of the underlying global ensemble models. We show that FHLO produces competitive intensity forecasts, especially when considering probabilistic verification statistics. We also demonstrate the reliability and accuracy of the probabilistic wind forecasts. Limitations of the model framework are also discussed

    Reply to “Comments on ‘Revisiting the Relationship between Eyewall Contraction and Intensification’”

    No full text
    Abstract In their comment, Kieu and Zhang critique the recent study of Stern et al. that examined the contraction of the radius of maximum wind (RMW) and its relationship to tropical cyclone intensification. Stern et al. derived a diagnostic expression for the rate of contraction and used this to show that while RMW contraction begins and accelerates as a result of an increasing negative radial gradient of tangential wind tendency inward of the RMW, contraction slows down and eventually ceases as a result of the increasing sharpness of the wind profile around the RMW during intensification. Kieu and Zhang claim that this kinematic framework does not yield useful understanding, that Stern et al. are mistaken in their favorable comparison of this framework to earlier work by Willoughby et al., and that Stern et al. are mistaken in their conclusion that an equation for the contraction of the RMW derived by Kieu is erroneous. This reply demonstrates that each of these claims by Kieu and Zhang is incorrect

    Revisiting the Relationship between Eyewall Contraction and Intensification

    No full text
    Abstract In the widely accepted convective ring model of tropical cyclone intensification, the intensification of the maximum winds and the contraction of the radius of maximum winds (RMW) occur simultaneously. This study shows that in idealized numerical simulations, contraction and intensification commence at the same time, but that contraction ceases long before peak intensity is achieved. The rate of contraction decreases with increasing initial size, while the rate of intensification does not vary systematically with initial size. Utilizing a diagnostic expression for the rate of contraction, it is shown that contraction is halted in association with a rapid increase in the sharpness of the tangential wind profile near the RMW and is not due to changes in the radial gradient of the tangential wind tendency. It is shown that a number of real storms exhibit a relationship between contraction and intensification that is similar to what is seen in the idealized simulations. In particular, the statistical distribution of intensifying tropical cyclones indicates that, for major hurricanes, most contraction is completed prior to most intensification. By forcing a linearized vortex model with the diabatic heating and frictional tendencies from a simulation, it is possible to qualitatively reproduce the simulated secondary circulation and separately examine the vortex responses to heating and friction. It is shown that heating and friction both contribute substantially to boundary layer inflow. They also both contribute to the contraction of the RMW, as the positive wind tendency from heating-induced inflow is maximized inside of the RMW, while the net negative wind tendency from friction and frictionally induced inflow is maximized outside of the RMW

    A Climatology of Hurricane Eye Formation

    No full text

    Time evolution of the intensity and size of tropical cyclones

    No full text
    The purpose of this paper is to analyze the life cycle of tropical cyclones in terms of a K‐Vmax diagram. Such a diagram summarizes the time evolution of the integrated kinetic energy K and the maximum tangential wind Vmax, which respectively measure vortex size and intensity. A typical life cycle consists of an incipient stage in which K and Vmax slowly increase until Vmax≈25 m s−1, a deepening stage in which K and Vmax increase more rapidly until Vmax≈60 m s−1, and finally a mature stage in which K continues to grow at approximately the same rate while Vmax remains fixed or even decreases. This typical life cycle can be diagnostically analyzed using a theoretical argument that is based on the balanced vortex model and, in particular, on the associated geopotential tendency equation. This is a second order partial differential equation containing the diabatic forcing and, under idealized conditions, two spatially varying coefficients: the static stability and the inertial stability, whose ratio determines the local Rossby length ℓ. Thus, the balanced azimuthal wind and temperature tendencies in a tropical vortex depend not only on the diabatic forcing, but also on the spatial distribution of ℓ. Under the simplifying assumption that the diabatic heating and the associated response are confined to the first internal vertical mode, the geopotential tendency equation reduces to a radial structure equation, which can be solved numerically. These solutions illustrate how the vortex response to diabatic heating depends on whether this heating lies in the large Rossby length region outside the radius of maximum wind or in the small Rossby length region inside the radius of maximum wind. Tangential wind tendencies are found to be hypersensitive to the location of the diabatic heating relative to the small Rossby length region in the vortex core.Key PointsPresents tropical cyclone life cycle graphically in terms of intensity and sizeExamines intensity and size tendencies using balanced vortex modelIntensification sensitive to colocation of diabatic heating, small Rossby lengt
    corecore