1,481 research outputs found

    Star formation activity in the southern Galactic HII region G351.63-1.25

    Full text link
    The southern Galactic high mass star-forming region, G351.6-1.3, is a HII region-molecular cloud complex with a luminosity of 2.0 x 10^5 L_sun, located at a distance of 2.4 kpc. In this paper, we focus on the investigation of the associated HII region, embedded cluster and the interstellar medium in the vicinity of G351.6-1.3. We address the identification of exciting source(s) as well as the census of stellar populations. The ionised gas distribution has been mapped using the Giant Metrewave Radio Telescope (GMRT), India at three continuum frequencies: 1280, 610 and 325 MHz. The HII region shows an elongated morphology and the 1280 MHz map comprises six resolved high density regions encompassed by diffuse emission spanning 1.4 pc x 1.0 pc. The zero age main-sequence (ZAMS) spectral type of the brightest radio core is O7.5. We have carried out near-infrared observations in the JHKs bands using the SIRIUS instrument on the 1.4 m Infrared Survey Facility (IRSF) telescope. The near-infrared images reveal the presence of a cluster embedded in nebulous fan-shaped emission. The log-normal slope of the K-band luminosity function of the embedded cluster is found to be 0.27 +- 0.03 and the fraction of the near-infrared excess stars is estimated to be 43%. These indicate that the age of the cluster is consistent with 1 Myr. The champagne flow model from a flat, thin molecular cloud is used to explain the morphology of radio emission with respect to the millimetre cloud and infrared brightness.Comment: 18 pages, 8 figures, To be published in MNRA

    A necklace of dense cores in the high-mass star forming region G35.20-0.74N: ALMA observations

    Get PDF
    The present study aims at characterizing the massive star forming region G35.20N, which is found associated with at least one massive outflow and contains multiple dense cores, one of them recently found associated with a Keplerian rotating disk. We used ALMA to observe the G35.20N region in the continuum and line emission at 350 GHz. The observed frequency range covers tracers of dense gas (e.g. H13CO+, C17O), molecular outflows (e.g. SiO), and hot cores (e.g. CH3CN, CH3OH). The ALMA 870 um continuum emission map reveals an elongated dust structure (0.15 pc long and 0.013 pc wide) perpendicular to the large-scale molecular outflow detected in the region, and fragmented into a number of cores with masses 1-10 Msun and sizes 1600 AU. The cores appear regularly spaced with a separation of 0.023 pc. The emission of dense gas tracers such as H13CO+ or C17O is extended and coincident with the dust elongated structure. The three strongest dust cores show emission of complex organic molecules characteristic of hot cores, with temperatures around 200 K, and relative abundances 0.2-2x10^(-8) for CH3CN and 0.6-5x10^(-6) for CH3OH. The two cores with highest mass (cores A and B) show coherent velocity fields, with gradients almost aligned with the dust elongated structure. Those velocity gradients are consistent with Keplerian disks rotating about central masses of 4-18 Msun. Perpendicular to the velocity gradients we have identified a large-scale precessing jet/outflow associated with core B, and hints of an east-west jet/outflow associated with core A. The elongated dust structure in G35.20N is fragmented into a number of dense cores that may form massive stars. Based on the velocity field of the dense gas, the orientation of the magnetic field, and the regularly spaced fragmentation, we interpret this elongated structure as the densest part of a 1D filament fragmenting and forming massive stars.Comment: 24 pages, 26 figures, accepted for publication in Astronomy and Astrophysics (abstract modified to fit arXiv restrictions

    Anchoring Bias in Online Voting

    Full text link
    Voting online with explicit ratings could largely reflect people's preferences and objects' qualities, but ratings are always irrational, because they may be affected by many unpredictable factors like mood, weather, as well as other people's votes. By analyzing two real systems, this paper reveals a systematic bias embedding in the individual decision-making processes, namely people tend to give a low rating after a low rating, as well as a high rating following a high rating. This so-called \emph{anchoring bias} is validated via extensive comparisons with null models, and numerically speaking, the extent of bias decays with interval voting number in a logarithmic form. Our findings could be applied in the design of recommender systems and considered as important complementary materials to previous knowledge about anchoring effects on financial trades, performance judgements, auctions, and so on.Comment: 5 pages, 4 tables, 5 figure

    IRAS 18511+0146: a proto Herbig Ae/Be cluster?

    Get PDF
    Context: The evolution of a young protocluster depends on the relative spatial distributions and dynamics of both stars and gas. Aims: We study the distribution and properties of the gas and stars surrounding the luminous (10^4 L_sun) protocluster IRAS 18511+0146. Methods: IRAS 18511+0146 and the cluster associated with it has been investigated using the sub-millimetre (JCMT-SCUBA), infrared (Spitzer-MIPSGAL, Spitzer-GLIMPSE, Palomar) and radio (VLA) continuum data. Cluster simulations have been carried out in order to understand the properties of clusters as well as to compare with the observations. Results: The central most obscured part of the protocluster coincident with the compact sub-millimetre source found with SCUBA is responsible for at least 2/3 of the total luminosity. A number of cluster members have been identified which are bright in mid infrared and show rising (near to mid infrared) spectral energy distributions suggesting that these are very young stellar sources. In the mid infrared 8.0 micron image, a number of filamentary structures and clumps are detected in the vicinity of IRAS 18511+0146. Conclusions: Based on the luminosity and cluster size as well as on the evolutionary stages of the cluster members, IRAS 18511+0146 is likely to be protocluster with the most massive object being a precursor to a Herbig type star.Comment: Accepted by the Astronomy and Astrophysics (23 Pages, 5 Tables, 12 Figures

    Local Restaurants’ Marketing and Sponsorship Within Collegiate Athletics

    Get PDF
    Corporate sponsorships, trademark licensing, and broadcasting rights within college athletics have become a multibillion-dollar business over the past decade. However, a gap in research exists within local businesses sponsorship of college athletics. Many college towns heavily rely on local businesses, specifically restaurants, to attract and retain sports fans. The purpose of this study is to examine local restaurants’ marketing strategies, community relations, and other sponsorship donations impacting the involvement of its collegiate sport sponsorship at the mid-major conference level. Purposeful sampling was used to include two local restaurant owners who participate in sport sponsorship in a Midwest college team. Semi-structured interview questions were used to acquire marketing strategies, sponsorship, asset selection, and return on investment (ROI) evaluation. Four main themes emerged: (1) the restaurant market in a college town, (2) pursuing big dreams through marketing: advertising, branding, and community connection, (3) progression in athletic sponsorship: decision making, investment, and assistance, and (4) keys to success. Local businesses often have different timing, intensity, and strength marketing strategies compared to those on a national level. The contributions and impacts of this study include sponsorship ROI evaluation strategies for two local restaurants, brand recognition and awareness valuation from their fan bases, and asset mixture selection

    ABCC1: a gateway for pharmacological compounds to the ischaemic brain

    Get PDF
    By preventing access of drugs to the CNS, the blood-brain barrier hampers developments in brain pharmacotherapy. Strong efforts are currently being made to identify drugs that accumulate more efficaciously in ischaemic brain tissue. We identified an ATP-binding cassette (ABC) transporter, ABCC1, which is expressed on the abluminal surface of the brain capillary endothelium and mildly downregulated in response to focal cerebral ischaemia, induced by intraluminal middle cerebral artery occlusion. In biodistribution studies we show that ABCC1 promotes the accumulation of known neuroprotective and neurotoxic compounds in the ischaemic and non-ischaemic brain, ABCC1 deactivation reducing tissue concentrations by up to two orders of magnitude. As such, ABCC1's expression and functionality in the brain differs from the liver, spleen and testis, where ABCC1 is strongly expressed on parenchymal cells, resulting -- in case of liver and testis -- in directed transport from the tissue into the blood. After focal cerebral ischaemia, ABCC1 deactivation abolished the efficacy of both neuroprotective and neurotoxic compounds. Our data indicate that ABCC1 acts as gateway for pharmacological compounds to the stroke brain. We suggest that the tailoring of compounds binding to abluminal but not luminal ABC transporters may facilitate stroke pharmacotherap

    Surface collective modes in the topological insulators Bi2_2Se3_3 and Bi0.5_{0.5}Sb1.5_{1.5}Te3x_{3-x}Sex_{x}

    Get PDF
    We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi2_2Se3_3 and Bi0.5_{0.5}Sb1.5_{1.5}Te3x_{3-x}Sex_{x}. Our goal was to identify the "spin plasmon" predicted by Raghu and co-workers [S. Raghu, et al., Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carrers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface, χ"(q,ω)\chi "(\textbf{q},\omega), at THz energy scales, and is the most likely origin of a quasiparticle dispersion kink observed in previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role.Comment: 5 pages, 4 figure

    Anomalous density fluctuations in a strange metal.

    Get PDF
    A central mystery in high-temperature superconductivity is the origin of the so-called strange metal (i.e., the anomalous conductor from which superconductivity emerges at low temperature). Measuring the dynamic charge response of the copper oxides, [Formula: see text], would directly reveal the collective properties of the strange metal, but it has never been possible to measure this quantity with millielectronvolt resolution. Here, we present a measurement of [Formula: see text] for a cuprate, optimally doped Bi2.1Sr1.9CaCu2O8+x (Tc = 91 K), using momentum-resolved inelastic electron scattering. In the medium energy range 0.1-2 eV relevant to the strange metal, the spectra are dominated by a featureless, temperature- and momentum-independent continuum persisting to the electronvolt energy scale. This continuum displays a simple power-law form, exhibiting q2 behavior at low energy and q2/ω2 behavior at high energy. Measurements of an overdoped crystal (Tc = 50 K) showed the emergence of a gap-like feature at low temperature, indicating deviation from power law form outside the strange-metal regime. Our study suggests the strange metal exhibits a new type of charge dynamics in which excitations are local to such a degree that space and time axes are decoupled

    Active wetting of epithelial tissues

    Full text link
    Development, regeneration and cancer involve drastic transitions in tissue morphology. In analogy with the behavior of inert fluids, some of these transitions have been interpreted as wetting transitions. The validity and scope of this analogy are unclear, however, because the active cellular forces that drive tissue wetting have been neither measured nor theoretically accounted for. Here we show that the transition between 2D epithelial monolayers and 3D spheroidal aggregates can be understood as an active wetting transition whose physics differs fundamentally from that of passive wetting phenomena. By combining an active polar fluid model with measurements of physical forces as a function of tissue size, contractility, cell-cell and cell-substrate adhesion, and substrate stiffness, we show that the wetting transition results from the competition between traction forces and contractile intercellular stresses. This competition defines a new intrinsic lengthscale that gives rise to a critical size for the wetting transition in tissues, a striking feature that has no counterpart in classical wetting. Finally, we show that active shape fluctuations are dynamically amplified during tissue dewetting. Overall, we conclude that tissue spreading constitutes a prominent example of active wetting --- a novel physical scenario that may explain morphological transitions during tissue morphogenesis and tumor progression
    corecore