5 research outputs found

    Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial

    Get PDF
    Background: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. Methods: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. Findings: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96–1·28). Interpretation: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. Funding: National Institute for Health Research Health Services and Delivery Research Programme

    Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial

    Get PDF
    BACKGROUND: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. METHODS: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. FINDINGS: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96-1·28). INTERPRETATION: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. FUNDING: National Institute for Health Research Health Services and Delivery Research Programme

    Differential diagnosis of vitamin D–related hypercalcemia using serum vitamin D metabolite profiling

    No full text
    International audienceGenetic causes of vitamin D-related hypercalcemia are known to involve mutation of 25-hydroxyvitamin D-24-hydroxylase CYP24A1 or the sodium phosphate co-transporter SLC34A1; which result in excessive 1,25-(OH)2 D hormonal action. However, at least 20% of idiopathic hypercalcemia (IH) cases remain unresolved. In this case-control study, we used precision vitamin D metabolite profiling based on LC-MS/MS of an expanded range of vitamin D metabolites - to screen German and French cohorts of hypercalcemia patients, to identify patients with altered vitamin D metabolism where involvement of CYP24A1 or SLC34A1 mutation had been ruled out, and possessed normal 25-OH-D3 :24,25-(OH)2 D3 ratios. Profiles were compared to those of hypercalcemia patients with hypervitaminosis D, Williams-Beuren syndrome (WBS), CYP24A1 mutation, and normal subjects with a range of 25-OH-D levels. We observed that certain IH and WBS patients exhibited a unique profile comprising 8-10-fold higher serum 23,25,26-(OH)3 D3 and 25-OH-D3 -26,23-lactone than normals; as well as very low serum 1,25-(OH)2 D3 (2-5 pg/mL) and elevated 1,24,25-(OH)3 D3 , which we interpret implies hypersensitive expression of vitamin D-dependent genes, including CYP24A1, as a general underlying mechanism of hypercalcemia in these patients. As serum 25-OH-D3 and 24,25-(OH)2 D3 remained normal, we excluded the possibility that the aberrant profile was caused by hypervitaminosis D, but instead points to an underlying genetic cause that parallels the effect of Williams Syndrome Transcription Factor deficiency in WBS. Furthermore, we observed normalization of serum calcium and vitamin D metabolite profiles at follow up of an IH patient where 25-OH-D was reduced to 9 ng/mL, suggesting that symptomatic IH may depend on vitamin D nutritional status. Other hypercalcemic patients with complex conditions exhibited distinct vitamin D metabolite profiles. Our work points to the importance of serum vitamin D metabolite profiling in the differential diagnosis of vitamin D-related hypercalcemia that can rationalize expensive genetic testing, and assist healthcare providers in selecting appropriate treatment

    Differential diagnosis of vitamin D‐related hypercalcemia using serum vitamin D metabolite profiling

    No full text
    International audienceGenetic causes of vitamin D-related hypercalcemia are known to involve mutation of 25-hydroxyvitamin D-24-hydroxylase CYP24A1 or the sodium phosphate co-transporter SLC34A1; which result in excessive 1,25-(OH)2 D hormonal action. However, at least 20% of idiopathic hypercalcemia (IH) cases remain unresolved. In this case-control study, we used precision vitamin D metabolite profiling based on LC-MS/MS of an expanded range of vitamin D metabolites - to screen German and French cohorts of hypercalcemia patients, to identify patients with altered vitamin D metabolism where involvement of CYP24A1 or SLC34A1 mutation had been ruled out, and possessed normal 25-OH-D3 :24,25-(OH)2 D3 ratios. Profiles were compared to those of hypercalcemia patients with hypervitaminosis D, Williams-Beuren syndrome (WBS), CYP24A1 mutation, and normal subjects with a range of 25-OH-D levels. We observed that certain IH and WBS patients exhibited a unique profile comprising 8-10-fold higher serum 23,25,26-(OH)3 D3 and 25-OH-D3 -26,23-lactone than normals; as well as very low serum 1,25-(OH)2 D3 (2-5 pg/mL) and elevated 1,24,25-(OH)3 D3 , which we interpret implies hypersensitive expression of vitamin D-dependent genes, including CYP24A1, as a general underlying mechanism of hypercalcemia in these patients. As serum 25-OH-D3 and 24,25-(OH)2 D3 remained normal, we excluded the possibility that the aberrant profile was caused by hypervitaminosis D, but instead points to an underlying genetic cause that parallels the effect of Williams Syndrome Transcription Factor deficiency in WBS. Furthermore, we observed normalization of serum calcium and vitamin D metabolite profiles at follow up of an IH patient where 25-OH-D was reduced to 9 ng/mL, suggesting that symptomatic IH may depend on vitamin D nutritional status. Other hypercalcemic patients with complex conditions exhibited distinct vitamin D metabolite profiles. Our work points to the importance of serum vitamin D metabolite profiling in the differential diagnosis of vitamin D-related hypercalcemia that can rationalize expensive genetic testing, and assist healthcare providers in selecting appropriate treatment
    corecore