849 research outputs found

    Edge momentum transport by neutrals: an interpretive numerical framework

    Get PDF
    Due to their high cross-field mobility, neutrals can contribute to momentum transport even at the low relative densities found inside the separatrix and they can generate intrinsic rotation. We use a charge-exchange dominated solution to the neutral kinetic equation, coupled to neoclassical ions, to evaluate the momentum transport due to neutrals. Numerical solutions to the drift-kinetic equation allow us to cover the full range of collisionality, including the intermediate levels typical of the tokamak edge. In the edge there are several processes likely to contribute to momentum transport in addition to neutrals. Therefore, we present here an interpretive framework that can evaluate the momentum transport through neutrals based on radial plasma profiles. We demonstrate its application by analysing the neutral angular momentum flux for an L-mode discharge in the ASDEX Upgrade tokamak. The magnitudes of the angular momentum fluxes we find here due to neutrals of 0.6 – 2 Nm are comparable to the net torque on the plasma from neutral beam injection, indicating the importance of neutrals for rotation in the edge.VetenskapsrĂ„det and Marie Sklodowska Curie Actions, Cofund, Project INCA 60039

    Pedestal and Er profile evolution during an edge localized mode cycle at ASDEX Upgrade

    Get PDF
    The upgrade of the edge charge exchange recombination spectroscopy diagnostic at ASDEX Upgrade has enabled highly spatially resolved me asurements of the impurity ion dynamics during an edge-localized mode cycle ( ELM ) with unprecedented temp oral resolution, i.e. 65 Ό s. The increase of transport during an ELM induces a relaxation of the ion, electron edge gradients in impurity density and fl ows. Detailed characterization of the recovery of the edge temperature gradients reveals a difference in the ion and electron channe l: the maximum ion temperature gradient T i is re-established on similar timescales as n e , which is faster than the recovery of T e .Afterthe clamping of the maximum gradient, T i and T e at the pedestal top continue to rise up to the next ELM while n e stays constant which means that the temperatur e pedestal and the resu lting pedestal pressure widen until the next ELM. The edge radial electric fi eld E r at the ELM crash is found to reduce to typical L-mode values and its ma ximum recovers to its pre-ELM conditions on a similar time scale as for n e and T i . Within the uncertainties, the measurements of E r align with their neoclassical predictions E r,neo for most of the ELM cycle, thus indicating that E r is dominated by collisional processes. However, between 2 and 4 ms af ter the ELM crash, other contributions to E B ́ fl ow, e.g. zonal fl ows or ion orbit effects, could not be excluded within the uncertainties.European Commission (EUROfusion 633053

    Topic: T12 - Electromagnetic Simulations in Advanced Applications.

    Get PDF

    The I-mode confinement regime at ASDEX Upgrade: global propert ies and characterization of strongly intermittent density fluctuations

    Get PDF
    Properties of the I­mode confinement regime on the ASDEX Upgrade tokamak are summarized. A weak dependence of the power threshold for the L­I transition on the toroidal magnetic field strength is found. During improved confinement, the edge radial electric field well deepens. Stability calculations show that the I­mode pedestal is peeling­ballooning stable. Turbulence investigations reveal strongly intermittent density fluctuations linked to the weakly coherent mode in the confined plasma, which become stronger as the confinement quality increases. Across all investigated structure sizes ( ≈ ⊄ k 5 – 12 cm − 1 , with ⊄ k the perpendicular wavenumber of turbulent density fluctuations), the intermittent turbulence bursts are observed. Comparison with bolometry data shows that they move poloidally toward the X­point and finally end up in the divertor. This might be indicative that they play a role in inhibiting the density profile growth, such that no pedestal is formed in the edge density profile.European Union (EUROfusion 633053)European Union (EUROfusion AWP15­ENR­09/IPP­02

    Experimental conditions to suppress edge localised modes by magnetic perturbations in the ASDEX Upgrade tokamak

    Full text link
    Access conditions for full suppression of Edge Localised Modes (ELMs) by Magnetic Perturbations (MP) in low density high confinement mode (H-mode) plasmas are studied in the ASDEX Upgrade tokamak. The main empirical requirements for full ELM suppression in our experiments are: 1. The poloidal spectrum of the MP must be aligned for best plasma response from weakly stable kink-modes, which amplify the perturbation, 2. The plasma edge density must be below a critical value, 3.3×10193.3 \times 10^{19}~m−3^{-3}. The edge collisionality is in the range Îœi∗=0.15−0.42\nu^*_i = 0.15-0.42 (ions) and Îœe∗=0.15−0.25\nu^*_e = 0.15-0.25 (electrons). However, our data does not show that the edge collisionality is the critical parameter that governs access to ELM suppression. 3. The pedestal pressure must be kept sufficiently low to avoid destabilisation of small ELMs. This requirement implies a systematic reduction of pedestal pressure of typically 30\% compared to unmitigated ELMy H-mode in otherwise similar plasmas. 4. The edge safety factor q95q_{95} lies within a certain window. Within the range probed so far, q95=3.5−4.2q_{95}=3.5-4.2, one such window, q95=3.57−3.95q_{95}=3.57-3.95 has been identified. Within the range of plasma rotation encountered so far, no apparent threshold of plasma rotation for ELM suppression is found. This includes cases with large cross field electron flow in the entire pedestal region, for which two-fluid MHD models predict that the resistive plasma response to the applied MP is shielded
    • 

    corecore