1,138 research outputs found

    Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research

    Get PDF
    Emerging applications such as Internet of Everything, Holographic Telepresence, collaborative robots, and space and deep-sea tourism are already highlighting the limitations of existing fifth-generation (5G) mobile networks. These limitations are in terms of data-rate, latency, reliability, availability, processing, connection density and global coverage, spanning over ground, underwater and space. The sixth-generation (6G) of mobile networks are expected to burgeon in the coming decade to address these limitations. The development of 6G vision, applications, technologies and standards has already become a popular research theme in academia and the industry. In this paper, we provide a comprehensive survey of the current developments towards 6G. We highlight the societal and technological trends that initiate the drive towards 6G. Emerging applications to realize the demands raised by 6G driving trends are discussed subsequently. We also elaborate the requirements that are necessary to realize the 6G applications. Then we present the key enabling technologies in detail. We also outline current research projects and activities including standardization efforts towards the development of 6G. Finally, we summarize lessons learned from state-of-the-art research and discuss technical challenges that would shed a new light on future research directions towards 6G

    TGFĪ²R-SMAD3 signaling induces resistance to PARP inhibitors in the bone marrow microenvironment

    Get PDF
    Synthetic lethality triggered by PARP inhibitor (PARPi) yields promising therapeutic results. Unfortunately, tumor cells acquire PARPi resistance, which is usually associated with the restoration of homologous recombination, loss of PARP1 expression, and/or loss of DNA double-strand break (DSB) end resection regulation. Here, we identify a constitutive mechanism of resistance to PARPi. We report that the bone marrow microenvironment (BMM) facilitates DSB repair activity in leukemia cells to protect them against PARPi-mediated synthetic lethality. This effect depends on the hypoxia-induced overexpression of transforming growth factor beta receptor (TGFĪ²R) kinase on malignant cells, which is activated by bone marrow stromal cells-derived transforming growth factor beta 1 (TGF-Ī²1). Genetic and/or pharmacological targeting of the TGF-Ī²1-TGFĪ²R kinase axis results in the restoration of the sensitivity of malignant cells to PARPi in BMM and prolongs the survival of leukemia-bearing mice. Our finding may lead to the therapeutic application of the TGFĪ²R inhibitor in patients receiving PARPis

    Alzheimerā€™s Disease: Dawn of a New Era?

    Get PDF
    Alzheimerā€™s disease (AD) is an irreversible neurodegenerative disease characterized by a progressive decline in cognition and memory, leading to significant impairment in daily activities and ultimately death. It is the most common cause of dementia, the prevalence of which increases with age; however, age is not the only predisposing factor. The pathology of this cognitive impairing disease is still not completely understood, which has limited the development of valid therapeutic options. Recent years have witnessed a wide range of novel approaches to combat this disease, so that they greatly increased our understanding of the disease and of the unique drug development issues associated with this disease. In this paper, we provide a brief overview of the history, the clinical presentation and diagnosis, and we undertake a comprehensive review of the various approaches that have been brought to clinical trials in recent years, including immunotherapeutic approaches, tau-targeted strategies, neurotransmitter-based therapies, neurotropic and hematopoietic growth factors, and antioxidant therapies, trying to highlight the lessons learned from these approaches

    Nutrients elimination from meat processing wastewater using Scenedesmus sp.; optimizations; artificial neural network and kinetics models

    Get PDF
    The potential of an algae-based system as an environmentally friendly and low-cost waļæ½ter treatment method to eliminate contaminants from water bodies has been considered. The purpose of this research was to see how effective Scenedesmus sp is in eliminating nutrients from meat processing wastewater (MPWW) throughout the phycoremediation process. Response surface methodology (RSM) and an artificial neural network (ANN) model were applied to improve the inactivation process as a function of cell concentraļæ½tions (3ā€“7 log10 CFU/mL) and time (1ā€“13 days). At 103 to 107 cell/mL of Scenedesmus sp., phycoremediation was carried out at atmospheric temperature (28 Ā± 2 ā—¦C, Ā±2500lux for 12:12 h of light/dark and pH 8). The findings documented 73.76% as the highest removal efficacy of total nitrogen (TN) and 77.85% of total phosphorus (TP), 75.40% of ammonia nitrogen (NH4-H), 77.88% of orthophosphate (PO3āˆ’ 4 ), and 64.97% of chemical oxygen demand (COD). The ANN revealed that both factors contribute significantly to the nutrient removal process. The batch kinetic coefficients of NH4-H removal were Km = 40.10 mg/L and k = 1.43 mg mg āˆ’1Chl a d āˆ’1 . Meanwhile, for PO3āˆ’ 4 , 1.07 mg mg āˆ’1Chl a dāˆ’1 , as well as 42.80 mg/L, were obtained. The NH4-N yield coefficient of NH4-N was Yn = 0.0192 mg Chl a mg āˆ’1 while PO3āˆ’ 4 was equal to Yp = 0.0409 mg Chl a mg āˆ’1 . These findings indicated successful use of Scenedesmus sp. for efficient pollutant removal from meat processing wastewater plants

    Material screening for two-step thermochemical splitting of H2S using metal sulfide

    Get PDF
    Associated with the rise in energy demand is the increase in the amount of H2S evolved to the environment. H2S is toxic and dangerous to life and the environment, thus, the need to develop efficient and costeffective ways of disposing of the H2S gas has become all-important. To this end, a two-step thermochemical H2S splitting cycle is proposed in this work which does more than just getting rid of the toxic gas but has the potential to produce valuable H2 gas as well as store the solar heat energy. Studies have proved that the type of material used, such as metal sulfides, is critical to the efficiency of this thermochemical splitting process. As follows, this study focuses on establishing a criterion to aid in selecting favorable metal sulfides for application and further development in the H2S thermochemical decomposition sphere. Using a computational approach, via the HSC Chemistry 8Ā®, evaluations such as the equilibrium yield from the sulfurization and decomposition reaction steps, the temperature required for reaction spontaneity, and the Reversibility Index were determined. Investigations proved that sulfides of Zirconium, Niobium, and Nickel were auspicious candidates for the thermochemical decomposition

    Roadmap for optical tweezers

    Get PDF
    Optical tweezers are tools made of light that enable contactless pushing, trapping, and manipulation of objects, ranging from atoms to space light sails. Since the pioneering work by Arthur Ashkin in the 1970s, optical tweezers have evolved into sophisticated instruments and have been employed in a broad range of applications in the life sciences, physics, and engineering. These include accurate force and torque measurement at the femtonewton level, microrheology of complex fluids, single micro- and nano-particle spectroscopy, single-cell analysis, and statistical-physics experiments. This roadmap provides insights into current investigations involving optical forces and optical tweezers from their theoretical foundations to designs and setups. It also offers perspectives for applications to a wide range of research fields, from biophysics to space exploration.journal articl

    Microbial fuel cell systems; developments, designs, efficiencies, and trends: A comparative study between the conventional and innovative systems

    Get PDF
    The microbial fuel cell (MFC) technology has appeared in the late 20th century and received considerable attention over the last decade due to its multiple and unique potential in converting the substrates into electricity and valuable productions. Extensive efforts have been paid to improve the MFCs performance, leading to the publication of a massive amount of research that developed various aspects of these systems. Most of these improvements have focused on optimization parameters, which is currently inappropriate to provide an innoļæ½vational developing vision for MFC systems. The convergent results in most of the previous conventional studies (12,643 studies according to the WOS database) have reduced the value of MFCs by drawing an incomplete image for the performance of the systems. Therefore, this paper aimed to provide a comprehensive comparison between the highly reliable studies that innovatively developed the MFC systems and the conventional MFCs studies. The current paper discusses the novel MFCs development history, designs, efficiency, and challenges compared to conventional MFCs. The discussion has displayed the high efficiency of the novel MFCs in removing over 90% of substrates and generating power of 800 mW māˆ’ 2 . The paper also analyzed the literature trends, history and suggested recommendations for future studies. This is the first paper highlighting the substantial differences between the innovative and conventional MFC systems, nominating it to be a vital reference for novel MFCs studies in the future

    Simulation Study of Photon-to-Digital Converter (PDC) Timing Specifications for LoLX Experiment

    Full text link
    The Light only Liquid Xenon (LoLX) experiment is a prototype detector aimed to study liquid xenon (LXe) light properties and various photodetection technologies. LoLX is also aimed to quantify LXe's time resolution as a potential scintillator for 10~ps time-of-flight (TOF) PET. Another key goal of LoLX is to perform a time-based separation of Cerenkov and scintillation photons for new background rejection methods in LXe experiments. To achieve this separation, LoLX is set to be equipped with photon-to-digital converters (PDCs), a photosensor type that provides a timestamp for each observed photon. To guide the PDC design, we explore requirements for time-based Cerenkov separation. We use a PDC simulator, whose input is the light information from the Geant4-based LoLX simulation model, and evaluate the separation quality against time-to-digital converter (TDC) parameters. Simulation results with TDC parameters offer possible configurations supporting a good separation. Compared with the current filter-based approach, simulations show Cerenkov separation level increases from 54% to 71% when using PDC and time-based separation. With the current photon time profile of LoLX simulation, the results also show 71% separation is achievable with just 4 TDCs per PDC. These simulation results will lead to a specification guide for the PDC as well as expected results to compare against future PDC-based experimental measurements. In the longer term, the overall LoLX results will assist large LXe-based experiments and motivate the assembly of a LXe-based TOF-PET demonstrator system.Comment: 5 pages, 7 figure

    A Framework of Building and Locational Characteristics Ranking for Purpose-built Offices in Malaysia

    Get PDF
    The development of purpose-built office market in Malaysia is primarily resolved by a supplydemand market. Since the office market in Malaysia has displayed significance improvement due to increasing level of competitiveness, many characteristics of purpose-built office have appeared and become prominent during the process of assessment. These characteristics were generally used as indicators in property valuation, building performance as well as office market appraisal. Based on these characteristics, property market participants can evaluate their property proficiently based on their requirements, especially in decision making during business planning, investment or property management. Technology growth and national policy also gave contribution factors on revealing newly characteristics of purpose-built office such as green building, intelligent building and sustainable development model. The purpose of this article is to identify suitable characteristics of purpose-built office that can be used in Malaysia. Integral to achieving this objective, exploration on purpose built office characteristics in a global and local context will be reconsidered. As a result, a building and locational framework of purpose-built officeā€™s characteristics in Malaysia will be diagnosed and verified appropriately

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    • ā€¦
    corecore