25 research outputs found

    Branched KLVFF tetramers strongly potentiate inhibition of beta-amyloid aggregation

    Get PDF
    The key pathogenic event in the onset of Alzheimer's disease (AD) is the aggregation of beta-amyloid (Abeta) peptides into toxic aggregates. Molecules that interfere with this process might act as therapeutic agents for the treatment of AD. The amino acid residues 16-20 (KLVFF) are known to be essential for the aggregation of Abeta. In this study, we have used a first-generation dendrimer as a scaffold for the multivalent display of the KLVFF peptide. The effect of four KLVFF peptides attached to the dendrimer (K(4)) on Abeta aggregation was compared to the effect of monomeric KLVFF (K(1)). Our data show that K(4) very effectively inhibits the aggregation of low-molecular-weight and protofibrillar Abeta(1-42) into fibrils, in a concentration-dependent manner, and much more potently than K(1). Moreover, we show that K(4) can lead to the disassembly of existing aggregates. Our data lead us to propose that conjugates that bear multiple copies of KLVFF might be useful as therapeutic agents for the treatment of Alzheimer's disease

    Low-Dose Imaging in a New Preclinical Total-Body PET/CT Scanner.

    Get PDF
    Ionizing radiation constitutes a health risk to imaging scientists and study animals. Both PET and CT produce ionizing radiation. CT doses in pre-clinical in vivo imaging typically range from 50 to 1,000 mGy and biological effects in mice at this dose range have been previously described. [ <sup>18</sup> F]FDG body doses in mice have been estimated to be in the range of 100 mGy for [ <sup>18</sup> F]FDG. Yearly, the average whole body doses due to handling of activity by PET technologists are reported to be 3-8 mSv. A preclinical PET/CT system is presented with design features which make it suitable for small animal low-dose imaging. The CT subsystem uses a X-source power that is optimized for small animal imaging. The system design incorporates a spatial beam shaper coupled with a highly sensitive flat-panel detector and very fast acquisition (<10 s) which allows for whole body scans with doses as low as 3 mGy. The mouse total-body PET subsystem uses a detector architecture based on continuous crystals, coupled to SiPM arrays and a readout based in rows and columns. The PET field of view is 150 mm axial and 80 mm transaxial. The high solid-angle coverage of the sample and the use of continuous crystals achieve a sensitivity of 9% (NEMA) that can be leveraged for use of low tracer doses and/or performing rapid scans. The low-dose imaging capabilities of the total-body PET subsystem were tested with NEMA phantoms, in tumor models, a mouse bone metabolism scan and a rat heart dynamic scan. The CT imaging capabilities were tested in mice and in a low contrast phantom. The PET low-dose phantom and animal experiments provide evidence that image quality suitable for preclinical PET studies is achieved. Furthermore, CT image contrast using low dose scan settings was suitable as a reference for PET scans. Total-body mouse PET/CT studies could be completed with total doses of <10 mGy

    Computational shelf-life dating : complex systems approaches to food quality and safety

    Get PDF
    Shelf-life is defined as the time that a product is acceptable and meets the consumers expectations regarding food quality. It is the result of the conjunction of all services in production, distribution, and consumption. Shelf-life dating is one of the most difficult tasks in food engineering. Market pressure has lead to the implementation of shelf-life by sensory analyses, which may not reflect the full quality spectra. Moreover, traditional methods for shelf-life dating and small-scale distribution chain tests cannot reproduce in a laboratory the real conditions of storage, distribution, and consumption on food quality. Today, food engineers are facing the challenges to monitor, diagnose, and control the quality and safety of food products. The advent of nanotechnology, multivariate sensors, information systems, and complex systems will revolutionize the way we manage, distribute, and consume foods. The informed consumer demands foods, under the legal standards, at low cost, high standards of nutritional, sensory, and health benefits. To accommodate the new paradigms, we herein present a critical review of shelf-life dating approaches with special emphasis in computational systems and future trends on complex systems methodologies applied to the prediction of food quality and safety.Fundo Europeu de Desenvolvimento Regional (FEDER) - Programa POS-ConhecimentoFundação para a Ciência e a Tecnologia (FCT) - SFRH/BPD/26133/2005, SFRH/ BPD/20735/200

    Reliability Estimation based on Fuzzy Life Time Data

    No full text

    Branched KLVFF tetramers strongly potentiate inhibition of beta-amyloid aggregation

    No full text
    The key pathogenic event in the onset of Alzheimer's disease (AD) is the aggregation of -amyloid (A) peptides into toxic aggregates. Molecules that interfere with this process might act as therapeutic agents for the treatment of AD. The amino acid residues 16-20 (KLVFF) are known to be essential for the aggregation of A. In this study, we have used a first-generation dendrimer as a scaffold for the multivalent display of the KLVFF peptide. The effect of four KLVFF peptides attached to the dendrimer (K4) on A aggregation was compared to the effect of monomeric KLVFF (K1). Our data show that K4 very effectively inhibits the aggregation of low-molecular-weight and protofibrillar A1-42 into fibrils, in a concentration-dependent manner, and much more potently than K1. Moreover, we show that K4 can lead to the disassembly of existing aggregates. Our data lead us to propose that conjugates that bear multiple copies of KLVFF might be useful as therapeutic agents for the treatment of Alzheimer's disease

    Stabilisation effects of phosphane ligands in the homogeneous approach of sunlight induced hydrogen production

    No full text
    Most of the systems for photochemical hydrogen production are not stable and suffer from decomposition. With bis(bidentate) tetraphosphane ligands the stability increases enormously, up to more than 1000 h. This stability was achieved with a system containing osmium(ii) as a light harvesting antenna and palladium(ii) as a water reduction catalyst connected with a bis(bidentate) phosphane ligand in one molecule with the chemical formula [Os(bpy)2(dppcb)Pd(dppm)](PF6)4. With the help of electrochemical measurements as well as photophysical data and its single crystal X-ray structure, the electron transfer between the two active metal centres (light harvesting antenna, water reduction catalyst) was analysed. The distance between the two active metal centres was determined to be 7.396(1) \uc5. In a noble metal free combination of a copper based photosensitiser and a cobalt diimine-dioxime complex as water reduction catalyst a further stabilisation effect by the phosphane ligands is observed. With the help of triethylamine as a sacrificial donor in the presence of different monophosphane ligands it was possible to produce hydrogen with a turnover number of 1176. This completely novel combination is also able to produce hydrogen in a wide pH-range from pH = 7.0 to 12.5 with the maximum production at pH = 11.0. The influence of monophosphane ligands with different Tolman cone angles was investigated. Monophosphane ligands with a large Tolman cone angle (>160\ub0) could not stabilise the intermediate of the cobalt based water reduction catalyst and so the turnover number is lower than for systems with an addition of monophosphane ligands with a Tolman cone angle smaller than 160\ub0. The role of the monophosphane ligand during sunlight-induced hydrogen production was analysed and these results were confirmed with DFT calculations. Furthermore the crystal structures of two important Co(i) intermediates, which are the catalytic active species during the catalytic pathway, were obtained. The exchange of PPh3 with other tertiary phosphane ligands can have a major impact on the activity, depending on the coordination properties. By an exchange of monophosphane ligands with functionalised phosphane ligands (hybrid ligands) the hydrogen production was raised 2.17 times
    corecore