46 research outputs found

    Efficient and Stable Low Iridium Loaded Anodes for PEM Water Electrolysis Made Possible by Nanofiber Interlayers

    Get PDF
    Significant reduction of the precious metal catalyst loading is one of the key challenges for the commercialization of proton-exchange membrane water electrolyzers. In this work we combine IrOx nanofibers with a conventional nanoparticle-based IrOx anode catalyst layer. With this hybrid design we can reduce the iridium loading by more than 80% while maintaining performance. In spite of an ultralow overall catalyst loading of 0.2 mg(Ir)/cm(2), a cell with a hybrid layer shows similar performance compared to a state-of-the-art cell with a catalyst loading of 1.2 mg(Ir)/cm(2) and clearly outperforms identically loaded reference cells with pure IrOx nanoparticle and pure nanofiber anodes. The improved performance is attributed to a combination of good electric contact and high porosity of the IrOx nanofibers with high surface area of the IrOx nanoparticles. Besides the improved performance, the hybrid layer also shows better stability in a potential cycling and a 150 h constant current test compared to an identically loaded nanoparticle reference.BMBF, 05KI9VFA, Ultrahochauflösende Untersuchung des Wassertransports in alkalischen Brennstoff- und Elektrolysezellen mittels Neutronenradiographie und –Tomographie (NeutroSense

    Anrechnung und Aufrechnung

    No full text
    Vierrath C. Anrechnung und Aufrechnung. Aachen: Shaker; 2000

    Spatially Resolved Quantification of Ionomer Degradation in Fuel Cells by Confocal Raman Microscopy

    No full text
    Ionomer membranes are crucial components of many electrochemical devices. In this work, confocal Raman microscopy is employed to characterize Nafion ionomers quantitatively in pristine status and after usage as a proton exchange membrane in a fuel cell. Confocal Raman microscopy allows non-destructive thickness and equivalent weight measurements of Nafion with a 95% confidence interval of ±13 g mol−1 at an equivalent weight of 1000 g mol−1, which is significantly more accurate than previously reported methods. Characterization can be performed at a spatial resolution better than 2 μm, providing insights into local membrane degradation after fuel cell operation. Membrane thinning to less than 40% of the initial thickness of Nafion NR-211 occurs after a 100 h open circuit voltage hold, accompanied by an anisotropic increase of the equivalent weight from 1035 g mol−1 to an average of 1200 g mol−1. Most pronounced increases are found close to the anode. Further, the characterization of a Nafion XL membrane shows that its microporous reinforcement is represented as increased equivalent weight with local heterogeneities within the membrane. These results show that confocal Raman microscopy is a valuable tool to investigate ionomers that are used as ion exchange membranes in electrochemical devices

    A Steady-State Monte Carlo Study on the Effect of Structural and Operating Parameters on Liquid Water Distribution within the Microporous Layers and the Catalyst Layers of PEM Fuel Cells

    No full text
    The distribution of liquid water agglomerations within a catalyst layer and a microporous layer of a polymer electrolyte membrane fuel cell employing a Monte Carlo model are simulated. The simulations are based on real material structures and locally resolved operating conditions. The 3D material structures are obtained from focused ion beam tomography capable of nm-scale imaging. The local temperature and the relative humidity profiles are provided by a computational fluid dynamics simulation, based on a single channel fuel cell model taking into account all relevant transport and electrochemical processes. The results of this Monte Carlo study confirm the strong dependency of the water saturation in the catalyst layer and microporous layer on the structural parameters and operating conditions, such as: wettability, pore size and local temperature and relative humidity

    Local hydration in ionomer composite membranes determined with confocal Raman microscopy

    No full text
    Water management in electrochemical energy applications like fuel cells has a crucial impact on performance, in particular on the ionic conduction of ionomer membranes. To strengthen the understanding of water management in such devices, we report a novel method for non-destructive measurements of the hydration of composite membranes based on confocal Raman microscopy. Composite membranes were produced by spray-coating of Nafion into a mesh of electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/polyvinylpyrrolidone (PVDF-HFP/PVP) blend nanofibers. Hydration levels of several pure nanofiber meshes and nanofiber/Nafion composites were evaluated by linear least squares fitting of reference Raman spectra to hyperspectral images. We found that spectral contribution of water to nanofiber spectra depends on the PVDF-HFP/PVP ratio and is independent from fiber diameter. Further, we were able to reliably determine nanofiber polymer composition of single fibers based on Raman spectroscopy. Raman imaging of composite membranes was performed at ambient air and fully hydrated conditions to study the local hydration in PVDF-HFP/PVP/Nafion composites as well as in a Nafion XL membrane. 2D through-plane mappings revealed that the nanofiber hydration positively correlated with PVP content. In the Nafion XL membrane, the polytetrafluoroethylene-based reinforcement was verified as a hydrophobic layer sandwiched between Nafion ionomer, which showed a more than 10% reduced hydration compared to the outer Nafion layers. These results motivate the use of confocal Raman microscopy as a novel method to investigate the local water distribution in ionomer composite membranes that are widely used in electrochemical energy conversion

    Impact of Carbon Support Corrosion on Performance Losses in Polymer Electrolyte Membrane Fuel Cells

    No full text
    Corrosion of the carbon support leads to a severe decay in the performance of PEM fuel cells, mainly due to an increase in the oxygen transport resistance. To investigate the effect of degradation on oxygen transport, we cycled MEAs between 1−1.5 V and analyzed the electrode structure with FIB-SEM tomography at various ageing states. The tomography results show that the electrode structure changes over 1000 cycles in terms of thickness (7.8 to 6.5 μm), porosity (44 to 38%) and diffusivity (9 to 8⋅105 m2s−1). Limiting current measurements in the wet (hydrogen/air) and dry state (hydrogen pumping) allowed the pressure dependent and pressure independent mass transport resistances to be distinguished and to quantify the impact of product water. The pressure independent resistance increased from 24 to 41 sm−1. Considering the marginal contribution of the catalyst pore space resistance (3 to 4 sm−1) it is concluded that the largest portion of the increase (50%) is caused by an increased local mass transport resistance. This is due to a decrease of the electrode roughness factor (282 to 169). The limiting current under wet conditions shows that another 44% could stem from a change in the wetting behavior, while 6% remains unexplained

    Morphology of nanporous carbon-binder domains in Li-ion batteris - a FIB-SEM study

    No full text
    FIB-SEM tomography is used to reconstruct the carbon-binder domain (CBD) of a LiCoO2 battery cathode (3.9 × 5 × 2.3 μm3) with contrast enhancement by ZnO infiltration via atomic layer deposition. We calculate the porosity inside the CBD (57.6%), the cluster-size distribution with a peak at 54 nm, and the pore-size distribution with a peak at 64 nm. The tortuosities of the pore space (1.6–2.0) and the CBD (2.3–3.5) show a mild anisotropy, which is attributed to the fabrication process. A comparison to a modeled homogenous CBD reveals that clustering in the CBD decreases its electronic conductivity while increasing the ionic diffusivity. To account for the higher calculated diffusivity compared to experimental values from literature, a simple binder swelling model is implemented, suggesting a swelling of 75 vol%. The prevention of both clustering and swelling could increase the volume available for active material and therefore the energy density

    Optimization of anodic porous transport electrodes for proton exchange membrane water electrolyzers

    No full text
    In this study we investigate the potential of porous transport electrode (PTE) based membrane electrode assemblies (MEAs) for proton exchange membrane water electrolysis. The focus is on the overpotential determining anodic PTE for the oxygen evolution reaction. The influences of catalyst loading, ionomer content and porous titanium substrate on the polarization behavior are analyzed. The comparison of a porous fiber-sintered substrate with a powder-sintered substrate shows no significant differences in the kinetic and mass transport regions. Ohmic losses, however, are lower for fiber PTEs above a catalyst loading of 1.0 mgIrO2 cm−2. Variations of the Nafion content in the catalyst layer reveal changes of mass transport and ohmic losses and have an influence on the reproducibility. Varying the noble metal loading and therefore the thickness of the applied catalyst layer influences the kinetic region and ohmic resistance of the MEAs. The best compromise between reproducibility and performance is found for a loading of 1.4 mgIrO2 cm−2 and 9 wt% Nafion. The stable operation of the aforementioned PTE is shown in a 200 h durability test at 2 A cm−2
    corecore